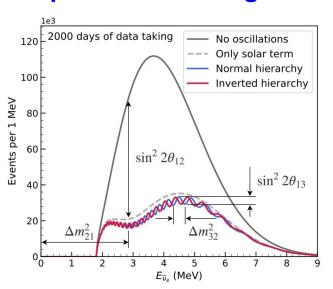
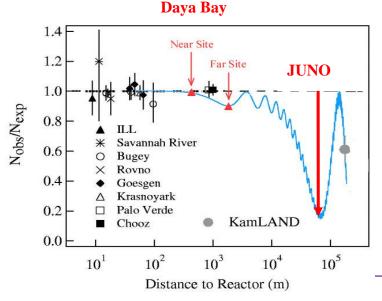
ICHEP 2020 | PRAGUE

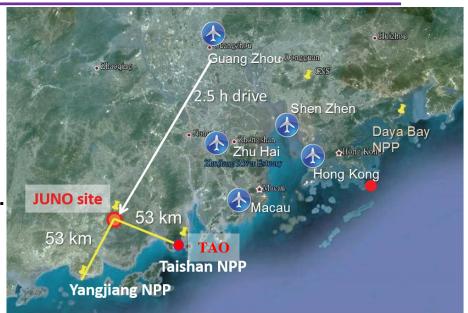
Status and progress of the JUNO detector

Jilei Xu
On behalf of the JUNO collaboration
July 31, 2020

Content



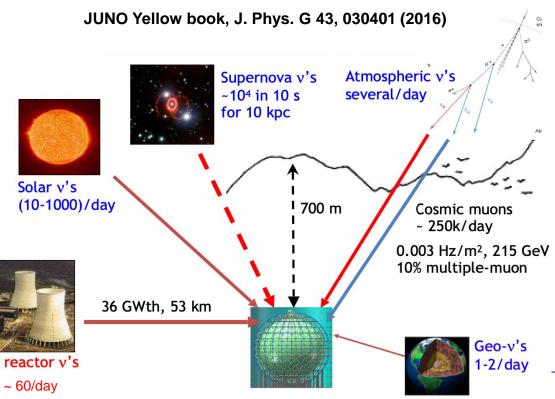

- JUNO introduction
- Physics prospects
- Sub-detectors and status
- Summary

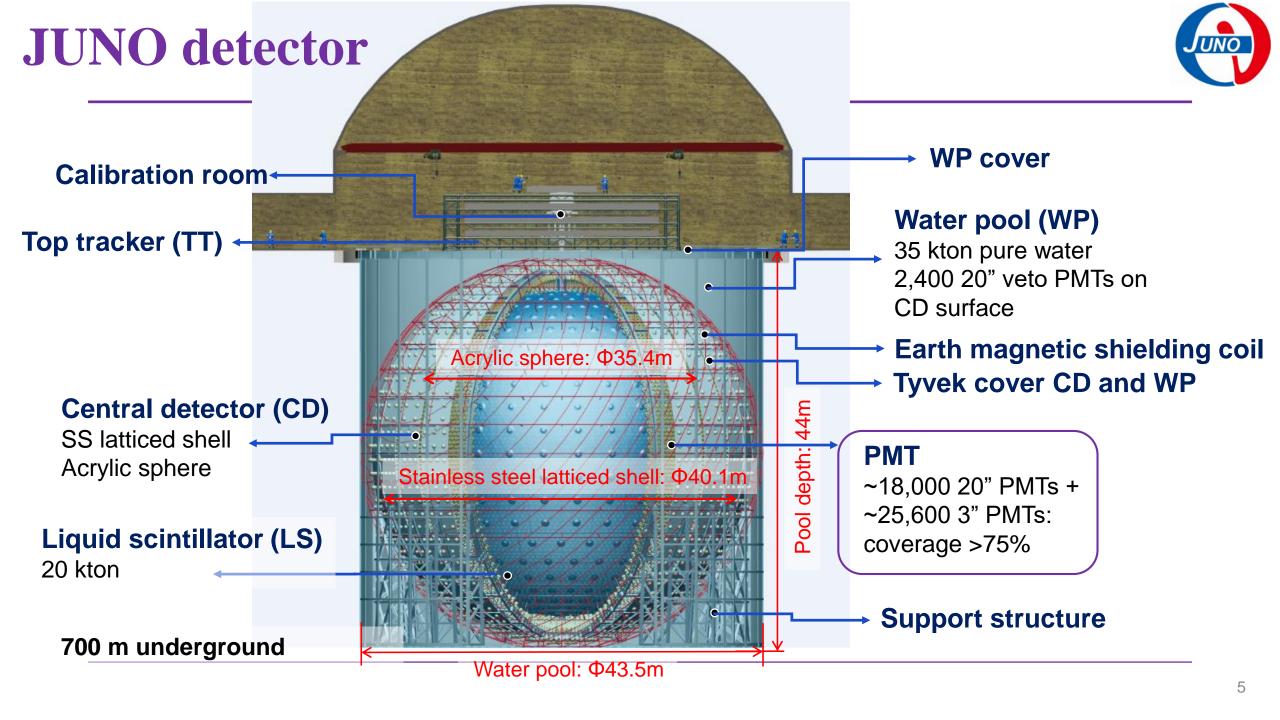

Jiangmen Underground Neutrino Observatory

- 20 kton liquid scintillator (LS), 3% @ 1 MeV energy resolution, under construction in southern of China.
- Main physics goal:
 - Determine neutrino mass ordering by reactor antineutrinos.
- Detector requirement:
 - High transparency LS, high coverage of PMTs and low backgrounds.
- The most challenging design in the reactor neutrino experiments throughout the world.

Yangjiang NPP	Taishan NPP		
17.4 GW	9.2 GW		

All six 2.9 GW cores in Yangjiang NPP and two 4.6 GW cores in Taishan NPP are in operation now.




Slope tunnel 1340m Vertical shaft 581 m footprint: ~5600 m²

Multipurpose experiment

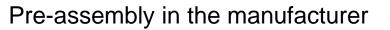
- Measure solar neutrino oscillation with highest precision (<1%).
- Many neutrinos: Supernova, Geo-, solar, atmospheric, sterile,...
- Have a certain ability to detect proton decay

77 members, ~ 600 collaborators

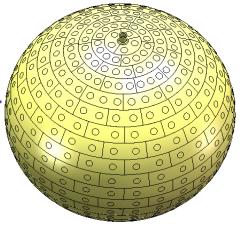
JUNO	١
JUNO	

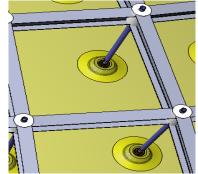
Г	Country	Institute	Country	Institute	Country	Institute
A	rmenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
E	Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
E	Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
E	Brazil	UEL	China	UCAS	Italy	INFN Catania
C	hile	PCUC	China	USTC	Italy	INFN di Frascati
-1	hile	UTFSM	China	U. of South China	Italy	INFN-Ferrara
-	China 🐧	BISEE	China	Wu Yi U.	Italy	INFN-Milano
	China 🦷	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
C	China 🚪	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
C	China 🦠	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
C	China	CIAE	China 👸	Zhengzhou U.	Italy	INFN-Roma 3
C	China	DGUT	China	NUDT	Latvia 📉 🌉	IECS
C	China	ECUST	China 🦠 🌷	CUG-Beijing -	Pakistan /	PINSTECH (PAEC)
	China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
C	China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
Ç	China	IHEP	Czech	Charles U.	Russia	MSU
. (China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
C	hina	Jinan U.	France	LAL Orsay	Taiwan-China	National Chiao-Tung U
C	China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
C	China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
	China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
	China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
C	China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
C	China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
	China	IGG-Beijing	Germany	TUM	USA	UC Irvine
C	China	IGG-Wuhan	Germany	U. Hamburg		

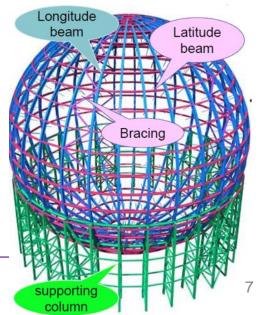
The 16th JUNO Collaboration Meeting


July 8-10,2020,Online

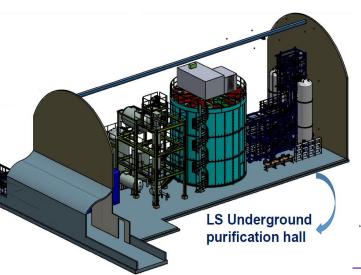
Acrylic spherical vessel and SS structure

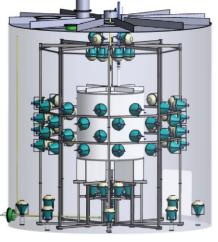

- The largest acrylic spherical vessel and SS structure.
 - Φ 35.4 m acrylic spherical vessel, acrylic sheets: 8 m × 3 m ×12 cm
 - Supporting bar to hold the Acrylic tank
 - Solved all technical problems: No standards for construction, high precision curved sheet, anti-seismic, transparency, low bkg, fast bonding and annealing.
- Acrylic vessel panels and SS structure are in production.

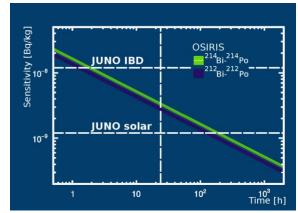




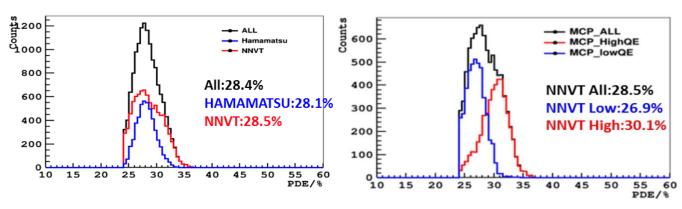
Bonding test of one ring acrylic


High transparent liquid scintillator

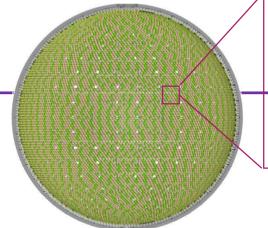


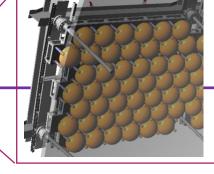

- Highest possible light yield and low radioactivity for JUNO
 - 2.5 g/L PPO + 3 mg/L Bis-MSB
 - 10⁻¹⁵ g/g for reactor antineutrinos
 - 10⁻¹⁷ g/g for solar neutrinos
- OSIRIS: Online Scintillator Internal Radioactivity Investigation System
 - 20 t LS and water tank 9 m x 9 m
 - Sensitivity of 10⁻¹⁵ g/g per day.

- Purification plant to achieve (attn. > 20 m)
 - Al₂O₃ filtration (Onsite installation this year)
 - Distillation
 - Steam stripping
 - Water extraction



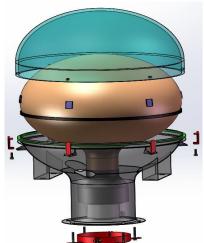
OSIRIS detector sensitivity




20-inch PMTs

- The largest coverage (>75%)
 - Micro-channel plate (MCP) PMT (~13,000 from Northern Night Vision Technology (NNVT) company)
 - Dynode PMT (~5,000 from Hamamatsu company)
- Almost all bare PMTs are delivered, acceptance test going well.
- Mass potting is on going (36%) and in good shape.
- Implosion protection cover mass production started.

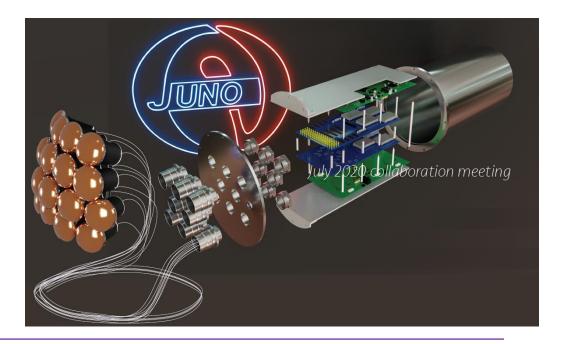
The photon detection efficiency (PDE) of new MCP-PMT is > 30%.



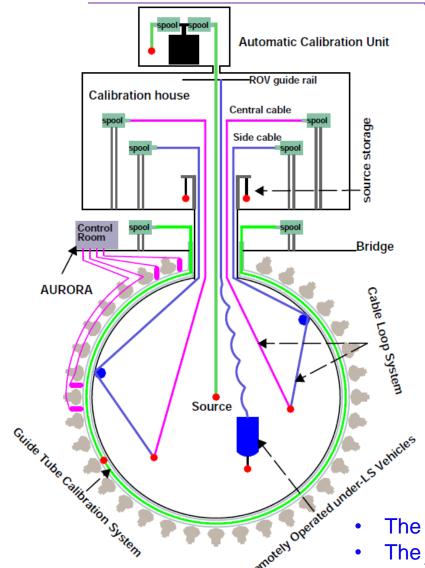
Cover

3-inch PMTs

- 25,600 3-inch PMTs from Hainan Zhanchuang (HZC) photonics company.
- Make double calorimetry, calibrate nonuniformity and non-linearity of Large-PMTs
 - Reduce energy scale uncertainty
 - Improve energy resolution (non-stochastic term)
- Increase optical coverage (~3%)
 - Improve energy resolution (stochastic term)
- Extend energy measurement for muon physics
- Independent system for supernova and solar neutrino oscillation parameter measurement.
- In good progress:
 - ~26,000 PMTs were produced.
 - Others (HV divider, potting, cable, connector, HV splitter, electronics, under water box) are all going well.

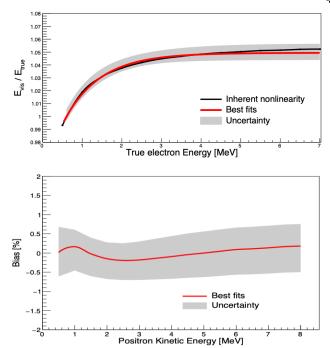

XP72B22

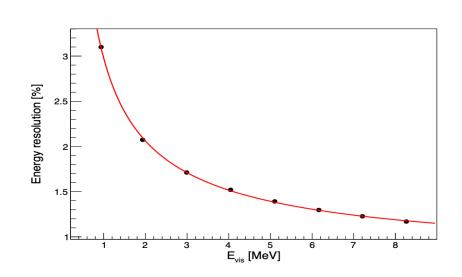
HZC Photonics Custom 3-inch PMTs for JUNO



20-inch and 3-inch PMTs interleaving

Comprehensive calibration system

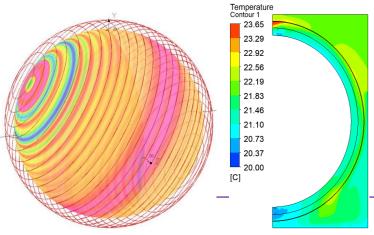


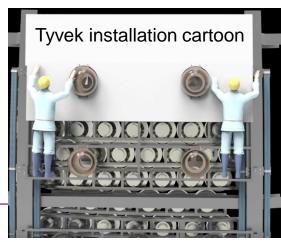

1D: Automatic Calibration Unit (ACU)

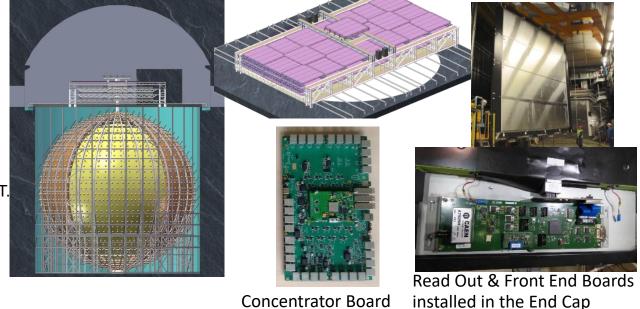
2D: Cable Loop System (CLS) and Guide Tube Calibration System (GTCS)

3D: Remotely Operated Vehicle (ROV)

Auxiliary systems: Calibration house, Ultrasonic Sensor System (USS), CCD and A Unit for Researching Online the LSc tRAnsparency (AURORA)


- The bias in the reconstructed energy is expected to be less than 1%.
- The effective energy resolution is expected to be less than 3.0% between 1 MeV and 8 MeV.


Veto system (Water Pool + Top Tracker)

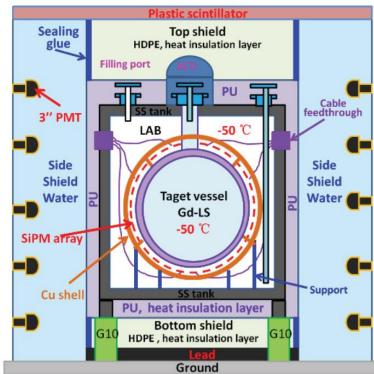


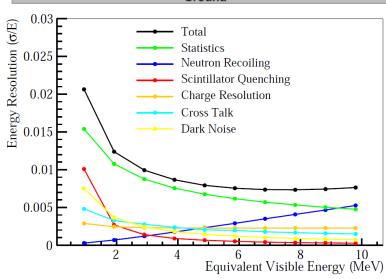
Water Pool

- 35 kton ultrapure water
 - Passive shielding for rock neutrons and for material radioactivity
 - Active veto for muon that goes through LS and water pool.
- 2400 20-inch MCP-PMTs on CD surface toward outside.
- Earth magnetic shielding coils
 - Residual B <10% of local earth magnetic field for CD PMT, <20% for Veto PMT.
- 5 mm thickness HDPE lining
 - Prevent diffusion of Radon from rocks and keep water clean.
- Water circulation in good shape, control in (21±1)°C
- Tyvek, good quality and technology, separate CD and WP, increase PE collection.

Top Tracker

- Reuse the target tracker walls of the OPERA experiment
- 3-layers XY plastic scintillator modules are already at JUNO site
- Front End Boards are all produced and other boards in production and test well.
- Not only for veto, but also for muon tracking validation.


JUNO-TAO


- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from one of the Taishan reactor cores, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum with sub-percent energy resolution for E > ~ 2 - 3 MeV.
 - Model-independent reference spectrum for JUNO
 - A benchmark for investigation of the nuclear database

Detector Design:

- 2.8 ton Gadolinium dopped liquid scintillator
- 10 m² 95% coverage with SiPM
- Photon detect efficiency > 50%
- Operate at -50 °C (SiPM dark noise)
- 4500 p.e./MeV
- 2000 reactor antineutrinos / day

TAO start operation in 2022

Summary

- A multipurpose experiment: mass ordering, solar oscillation parameters, supernova neutrinos, solar neutrinos, geo-neutrinos, atmospheric neutrinos, nucleon decay, etc.
- Detector component production is in good progress.
- Start data taking in 2022.

Related talks:

- Cecile Jollet, 31/07/2020, 08:00: <u>JUNO Physics</u>
- Qian Sen, 28/7/2020, 15:30: <u>The MCP based Large Area PMTs for Neutrino Detector</u>

Posters:

- Kangfu Zhu, 29/07/2020, 13:39: <u>The JUNO Calibration Strategy and its Simulation</u>
- Thilo Birkenfeld, 29/07/2020, 13:45: <u>Detector Simulation and Reconstruction of Supernova Neutrinos with JUNO</u>
- Ziyuan Li, 30/07/2020, 13:45: <u>Vertex Reconstruction and Deep Learning Applications in JUNO</u>
- Guihong Huang, 30/07/2020, 13:48: Energy and vertex reconstruction in JUNO
- Yuhang Guo, 30/07/2020, 13:48: Prospects for Proton Decay Searches in JUNO
- Joao Pedro, 30/07/2020, 13:51: <u>Status of the Veto System of JUNO</u>
- Cecile Jollet, 30/07/2020, 13:54: 3-inch Photomultiplier System of the JUNO Experiment

