

Knut and Alice Wallenberg Foundation

Polarised and entangled hyperon-antihyperon pairs in BESIII

40th International Conference on High Energy Physics, July 28 – August 4 2020, Prague

Prof. Dr. Karin Schönning, Uppsala University

Outline

- Introduction
- The BESIII experiment
- Hyperon structure
- Hyperon decays
- Summary

UNIVERSITET

Introduction

Many challenges in modern physics manifest themselves in the **nucleon**.

Challenging to describe from first principles:

- Its abundance
- Its mass
- Its spin
- Its structure
- Its radius

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace building
 blocks

Advantage of hyperons

Polarisation experimentally accessible by the weak, parity violating decay:

Example:

$$I(\cos\theta_{\rm p}) = N(1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta_{\rm p})$$

Fundamental Question

UPPSALA UNIVERSITET

BESIII @ BEPC II

- Beijing Electron Positron Collider (BEPC II):
 - $-e^+e^-$ collider within CMS range 2.0 4.7 GeV.
 - Optimised in the τ -charm region.

- Beijing Spectrometer (BES III):
 - Near 4π coverage
 - Tracking, PID, calorimetry
 - Broad physics scope

Part 1

HYPERON STRUCTURE

Hyperon structure

- Quantified by Electromagnetic Form Factors (EMFFs).
- Analytic functions of q^2 of virtual photon γ^* .
- Space-like EMFFs are related to *charge* and *magnetization density*.
- Time-like EMFFs accessible also for unstable particles, *e.g.* hyperons.

Picture credit: E. Perotti, PhD thesis (2020)

Space-like vs. time-like EMFFs

- Related *via* dispersion relations*.
- Time-like EMFFs can be complex with a relative phase.
 Phase accessible *via* the measurable polarisation!
- Asymptotic behaviour as $|q^2| \rightarrow \infty$: SL ~TL
 - Nucleons: SL and TL accessible.
 - Hyperons: Only TL accessible, but also phase! SL = TL $\leftrightarrow \Delta \Phi(q^2) \rightarrow o$ as $|q^2| \rightarrow \infty$

Hyperon polarisation offers an alternative way to study asymptotic behaviour of form factors!

UPPSALA UNIVERSITET

First complete measurement of Λ EMFF

Formalism for $e^+e^- \rightarrow \overline{Y}Y, Y \rightarrow BM + c.c$:

Spin $\frac{1}{2}$ baryons: Two complex amplitudes contribute \rightarrow can parameterise in terms of

- Angular distribution parameter $\boldsymbol{\eta}$
- Phase $\Delta \Phi$

Unpolarized part Polarized part Spin correlated part $W(\xi) = F_0(\xi) + \eta F_5(\xi) - \alpha^2 \left(F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi) \right)$ $+\alpha\sqrt{1-\eta^2}\sin(\Delta\Phi)(F_3(\boldsymbol{\xi})-F_4(\boldsymbol{\xi}))$ (assuming $\alpha = -\overline{\alpha}$) $\mathscr{T}_0(\xi) = 1$ $\mathscr{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$ e^+ $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$ $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$ *PLB 772 (2017) 16. $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$ $(heta_2, arphi_2)$ $\mathscr{T}_5(\xi) = \cos^2 \theta$ 10 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

First complete measurement of Λ EMFF

• New BESIII data at 2.396 GeV with 555 exclusive $\overline{\Lambda}\Lambda$ events in sample.

$$- R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$$

- $\Delta \Phi = 37^o \pm 12^o \pm 6^o$
- $-\sigma = 118.7 \pm 5.3 \pm 5.1 \text{ pb}$

←PRL 123 (2019) 122003

11

- Most **precise** result on *R* and σ
- **First** conclusive result on $\Delta \Phi$

Theory interpretations

- $\Lambda\overline{\Lambda}$ FSI with potentials from $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ data (PS185) ------
 - Haidenbauer and Meissner, Phys. Lett. B 761, 456 (2016)
- Vector meson dominance
 - Yang, Chen and Lu, Phys. Rev. D 100, 073007 (2019)
- Dispersion theory
 - Pacetti, talk at the *Workshop on Baryon Production at BESIII*, USTC Hefei, China (2019)

Part 2

HYPERON DECAYS

Hyperon decays

- Searchground for physics beyond the Standard Model at the precision frontier.
- Occur through an interplay between weak/BSM and strong processes.
 - Non-pQCD effects may hide CP violation.
- Two-body decays: quantified by decay parameters, *e.g.* α
 - accessible in direct decay
 - CP symmetry: $\alpha = -\overline{\alpha}$
 - CP observable defined by *e.g.*:

$$A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

14

Measurement of the Λ decay parameters

Formalism for $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+ *$ (same as before but **without** assuming $\alpha = -\overline{\alpha}$)

Measurement of the Λ decay parameters

• New BESIII measurement of $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$ using ~ 420 000 events of $\Lambda \rightarrow p\pi^-$, $\overline{\Lambda} \rightarrow \overline{p}\pi^+$ ~ 47 000 events of $\Lambda \rightarrow p\pi^-$, $\overline{\Lambda} \rightarrow \overline{n}\pi^0$ a

B€SⅢ

Value of $\alpha \sim 17\%$ > old PDG value. Picture cred: Nature Phys. 15, p. 625-625 (2019) Most precise CP test so far for Λ decay:

BESIII, Nature Phys. 15, p 631-634 (2019)

Measurement of the Σ^+ decay parameter

- New BESIII measurement of $\Sigma^+ \rightarrow p\pi^0$ decay
 - ~ 88 ooo events of $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$
 - ~ 5300 events of $\psi(3686) \rightarrow \Sigma^+ \overline{\Sigma}^-$

• Opposite sign of hadronic form factor phase at J/ψ and $\psi(3686)$ mass.

Sequential hyperon decays

18

- β , γ , ϕ accessible in sequential decays
- CP symmetry: $\beta = -\overline{\beta}$ etc.
 - CP observables *e.g.*: $A = \frac{\alpha + \overline{\alpha}}{\alpha \overline{\alpha}}$ and $B = \frac{\beta + \beta}{\beta \overline{\beta}}$
- Can separate weak/BSM amplitudes from strong by combining A and B*
 - $\rightarrow \text{ better sensitivity to} \\ \alpha + \mathcal{P}_{\Xi} \cos \theta \\ \text{CP violation!}$

*Donogue, He and Pakvasa, PRD 34, 833 (1986) Picture credit: S. Olsen, hep-ex: 1911.01021

Measurement of Λ_c^+ decay parameters

- Single-tag studies of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$, $\Lambda_c^+ \rightarrow pK_s$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$, $\Sigma^0 \pi^+ + c.c.$
 - No spin correlation could be studied.
- Indication of non-zero Λ_c^+ polarisation at $E_{CMS} = 4.6$ GeV.
- First measurements of α_{pK} and $\alpha_{\Sigma^0 \pi^+}$.
- Improved precision for $\alpha_{\Lambda\pi}$ and $\alpha_{\Sigma^+\pi^0}$.
- "Proof-of-principle" of measurements of β and γ .

- Method more sensitive the larger the polarisation.

M. ABLIKIM et al.

PHYS. REV. D 100, 072004 (2019)

TABLE I. Parameters measured in this analysis.				
Parameters	$\Lambda_c^+ \to p K_S^0$	$\Lambda\pi^+$	$\Sigma^+\pi^0$	$\Sigma^0\pi^+$
α^+_{BP}	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.57 \pm 0.10 \pm 0.07$	$-0.73 \pm 0.17 \pm 0.07$
α_{RP}^{+} (PDG)		-0.91 ± 0.15	-0.45 ± 0.32	
β_{BP}		$0.06\substack{+0.58+0.05\\-0.47-0.06}$	$-0.66^{+0.46+0.22}_{-0.25-0.02}$	$0.48\substack{+0.35+0.07\\-0.57-0.13}$
γ_{BP}		$-0.60^{+0.96+0.17}_{-0.05-0.03}$	$-0.48^{+0.45+0.21}_{-0.42-0.04}$	$0.49^{+0.35+0.07}_{-0.56-0.12}$
$\Delta_1^{BP}(\mathrm{rad})$		$3.0\pm2.4\pm1.0$	$4.1\pm1.1\pm0.6$	$0.8\pm1.2\pm0.2$

Spin properties of the Ω^-

RESI

- The process $e^+e^- \rightarrow \gamma^*/\psi(3686) \rightarrow \Omega^-\overline{\Omega}^+$ for the spin 3/2 Ω^- is described by four form factors / helicity amplitudes.*
- Single-tag study of $\psi(3686) \rightarrow \Omega^{-}\overline{\Omega}^{+}$ data to measure**:
 - Helicity amplitudes
 - Decay parameter $\phi_{\Omega^-}(\Omega^- \to \Lambda \pi^-)$ for the first time.

Ongoing studies

- Λ EMFF phase dependence on energy
- Octet hyperon form factors
- CP tests in sequential decays of Σ^0 , Ξ^- and Ξ^0 .
 - Sample of $10^{10} J/\psi$ events available.
 - Exclusive, double-tag measurements.
 - Dedicated, model-independent formalism *,**,***.

Stay tuned!

* Phys. Rev. D 101, 033002 (2020) ** Phys. Lett. B 788, 535 (2019) ***Phys. Rev. D 100, 114005 (2019)

Summary

- Hyperons provide a powerful diagnostic tool to study
 - The strong interaction.
 - Fundamental symmetries.
- New measurements from BESIII
 - Complete measurement of Λ EM form factors.
 - Most precise test of CP symmetry in Λ decays.
 - New studies of Σ^+ , Ω^- and Λ_c^+ .
 - Ongoing, large-scale studies.

Thanks for your attention!

