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Overview and goals
• The ARCADIA project aims to develop a design and fabrication platform for large-area CMOS sensor
• Target applications: space, medical and detectors at lepton colliders.
• Use a proven sensor (SEED) with good radiation tolerance and full depletion.
• Require a designed characterized by a scalable architecture over large area.

Space
• Ultra low power (≤ 10 mW/cm2)
• Very low rate ≈ kHz/cm2

• Low material budget
• Large area (≥ 6 cm2)
• 3-side buttable
• Low rad-tolerance ≈ 1 kGy

Medical
• Low power (≤ 40 mW/cm2)
• Medium rate ≈ 10 MHz – 100 MHz/cm2

• Ultra low material budget (low energy)
• Very large area (≥ 16 cm2)
• 3-side buttable
• Low to medium rad-tolerance ≈ 10 kGy

Lepton collider
• Low power (≤ 40 mW/cm2)
• Medium rate ≈ 10 MHz – 100 MHz / cm2

• Very low material budget
• Large area (≥ 6 cm2)
• 3-side buttable
• Low to medium rad-tolerance ≈ 10 kGy
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Target specifications

Main features
• Clockless matrix (to minimize power dissipation)
• Trigger-less readout
• Binary readout (with pixel masking)
• Easy replicable, identical sections (512 × 32 px each in the demonstrator)
• Scalable architecture able to cope with 2048 pixel high sections
• One output link per section (with power-off and bypass for space-mode operations)

• Ultra low power “space” mode, using only one high speed output for all the sections.

Min Max Note

Power consumption 10 mW/cm2 20 mW/cm2

Pixel pitch - 25 µm In demonstrator the largest dictated by CCE

Matrix area 4 cm2 24 cm2 1 cm2 in the first demonstrator

Hit Rate 10 MHz/cm2 100 MHz/cm2 Assuming 4 px/hit

Timing resolution O (1 µs) O (10 µs) For first demonstrator

Radiation hardness - 5 kGy Clearance required if > 5 kGy (lepton collider)
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Technology: 110 nm CMOS CIS 
technology, high-resistivity bulk

Full depletion with fast charge 
collection

Both NMOS and PMOS 
transistors, 6 metal layers

Custom patterned backside
(patented) with LFoundry

50 µm to 500 µm sensor thickness 
(more if necessary)

Fully depleted sensor
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A “thin” 100 µm thickness version has been also successfully 
produced and tested

The ARCADIA design uses a sensor solution (SEED) developed in collaboration with LFoundry to 
achieve uniform, full depletion over thicknesses of few hundreds microns by virtue of a patterned 
backside (4 mask process).
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Full depletion achieved on 300 µm thick sensor
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The sensor becomes fully depleted, with uniform field below the pixel wells, for voltages above 140 V 
for a 300 µm thick detector. The same happens at lower voltages (60 V) for a thinner version of 100 µm 
thickness.

Not yet fully depleted 
at the sensor 

periphery, where the 
diodes remains 

connected to ground 
(reset voltage ≈0V at 

the borders)

Uniform full depletion 
achieved across the 
device, even border 
diodes are insulated 

from ground (uniform 
voltage after reset 

≈0.6V)
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Vbias = 120V

Vbias = 140V
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Sensor radiation hardness

The sensor behaves well respect to ionizing radiation. Initial measurements for TID done using x-rays 
(Seifert machine) show how the gain (calibrated with 55Fe source) is only slightly affected up to about 1 
kGray (100 kRad).

Gain vs total dose Noise vs total dose
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Various test structures:
• Smaller matrices
• Sensor design modifications
• Macro-pixels (strips of 25 µm and 50 µm)

Two main matrices of 512 × 512 pixels, 
implementing two different front-end topologies 
(see next slides)

Demonstrator production engineering run (September 2020)
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Matrix demonstrator characteristics

512 × 512 pixels

16× bias blocks

16× sections

Periphery (16× 8b10b & serializers)

Padframe & transmitters / receivers

12.8 mm
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The first prototype embeds two 512 × 512 pixel matrices (different front-ends), divided into 16 identical 
sections. Each section has a dedicated bias and readout blocks, plus a I/O stage for 320 Mb/s data 
transmission.

• Pixel size: 25 μm x 25 μm
• Matrix core 512 x 512, side-buttable.
• Matrix, EoC architecture, data links scalable to 2048 x 2048
• Trigger-less binary data readout, up to 10-100 MHz/cm2
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ALPIDE-like and Bulk-Driven front ends

• Pixel area: 25 x 25 µm2

• Diode area: 9 x 9 µm2

• Analog circuits area: 223 µm2

ALPIDE-like front-end Bulk-driven front-end

Collection node Collection node
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Architecture: custom modular readout

512 × 512 pixels

The first prototype embeds a 512 × 512 pixel matrix, divided into 16 identical sections. Each section has 
a dedicated bias and readout blocks, plus a I/O stage for 320 Mb/s data transmission.

320 Mb/s from each section

32 pixels per section



11/14

Within a double column the pixels are organized into “cores”, to optimize the readout of multiple pixels 
clusters. The readout is tokenized, with the clock running only on the periphery.

Architecture: clusterizing within the matrix

2 × 4 pixel Regions, divided into Master (2 x 2) and Slave (2 x 2)
• Slaves (w/o readout) choose a Master: its own (top), or the preceding one (bottom) 
• Masters propagate 2×4 pixel data packet to periphery, then await the Acknowledge pulse
• Significant reduction of column occupancy and readout clock
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Architecture: outputs

The Section Output Unit comprises:
• a 320MHz DDR Serializer
• an 8b10b encoder
• an SLVS Transmitter
The SOU keeps constant data flow.
Packets are 40-bits long, with 8/10 encoding

• At 320MHz DDR, SOU sends a packet every 
62.5ns

• SOU can read data from the SRUs at 16MHz
• If the SRU FIFO is empty, the SOU sends a 

synchronization packet

High-rate mode Slow-rate (space) mode
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Architecture: verification and performance simulation

Extensive simulation using database-retrieved and/or monte-carlo simulated clusters reflecting 
different particle types and sensor thicknesses, with spatial and time distribution defined by 
application-specific file representing the expected particle flux (in space and time) for that scenario.

Time-walk vs charge 
look up tables from 

back-annotated 
simulations to 

realistically simulate 
the time evolution of 

each cluster pixel

10 MHz / cm2 uniform (Poissonian in time)

100 MHz / cm2 uniform (Poissonian in time)
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Conclusions

Sensor
• Proven, patented fully-depleted sensor solution (SEED)
• Thickness available in the 100 µm – 500 µm range.
• Radiation tolerant to 5 Gy (500 kRad) TID with minimal degradation, up to 100 Gy with 2× noise.
• Testing with reactor neutrons (MeV range) ongoing.

Front-end
• Two front-end solutions, ALPIDE-like and Bulk-Driven.
• Similar performances, better timing with Bulk-Driven, but with added jitter and noise
• Decision will come only after prototypes testing.

Architecture
• Low-power, clock-less matrix targeting ≤ 20 mW/cm2 dissipation and 100 MHz/cm2 hit rate.
• Scalable: up to large area sensor with 2048 pixels/column: 5 cm tall column with 25 µm pitch.
• Partial clustering and compression embedded into the readout itself to further save power.
• Low power mode for space applications, with only one active high-speed output.

Next
• Improved, more efficient architecture to be tested in the second prototype (spring 2021).
• Protection against SEUs (primary protons and ions, secondary fast neutrons) (spring 2021)
• Testing stitching toward the realization of larger-than-reticle sensors (end 2021).
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