

Measurements of prompt photon production with the ATLAS detector

Frank Siegert

on behalf of the ATLAS collaboration

ICHEP 2020

Why are we interested in prompt photons?

 Prompt photon pairs relevant for SM Higgs measurements and BSM resonance searches

Single-photon (+ jets) for PDFsand jet calibration

- Prompt photons are interesting in themselves as testing ground for perturbative QCD
 - Non-trivial QCD effects despite QED core process

~ later!

 $Z \rightarrow \mu\mu + \text{jet}$

 2×10^{2}

Multijet
 10²

0.85

20 30

[1802.03021]

[2007.02645]

 2×10^{3}

 p_{τ}^{jet} [GeV]

Non-prompt photons from hadron decays (e.g. $\pi^0 \rightarrow \gamma \gamma$): Here: Main background!

Resonant production of photon pairs (e.g. $gg \rightarrow H \rightarrow \gamma\gamma$):

Here: Negligible (but included).

See dedicated ATLAS searches/measurements

in presentations by [Antoine], [Yufeng], [Alex], [Artem]

Continuum production of photon (pairs):

Theoretical description by "direct" and "fragmentation" production. Experimentally: Isolated photons with strict EM shower identification.

Analysis definitions

Full

Photon isolation Diphoton topology

$\gamma\gamma$ @ 13 TeV with 139/fb

γ + 2 jets @ 13 TeV with 36/fb

Fiducial phase space:

Requirements on photon	$E_{\mathrm{T}}^{\gamma} > 150 \text{ GeV}, \ \eta^{\gamma} < 2.37 \ (\text{excluding } 1.37 < \eta^{\gamma} < 1.56)$				
	$E_{\mathrm{T}}^{\mathrm{iso}} < 0.0042_{\mathrm{T}}^{\gamma} + 4.8 \; \mathrm{GeV} \; (\mathrm{reconstruction \; level})$				
	$E_{\mathrm{T}}^{\mathrm{iso}} < 0.0042_{\mathrm{T}}^{\gamma} + 10 \text{ GeV (particle level)}$				
Requirements on jets	at least two jets using anti- k_t algorithm with $R=0.4$				
	$p_{\rm T}^{\rm jet} > 100 \text{ GeV}, y^{\rm jet} < 2.5, \Delta R^{\gamma - { m jet}} > 0.8$				
Phase space	total	fragmentation enriched	direct enriched		
		$E_{ m T}^{\gamma} < p_{ m T}^{ m jet2}$	$E_{\mathrm{T}}^{\gamma} > p_{\mathrm{T}}^{\mathrm{jet1}}$		
Number of events	755270	111 666	386846		

- Observables constructed from final state of photon + jet + jet
 - $E_T(\gamma)$, $p_T(j)$, y(j)
 - $\Delta y(\gamma, j), \Delta \Phi(\gamma, j)$
 - $\Delta y(j_1, j_2), \Delta \Phi(j_1, j_2)$

Fiducial phase space: Selection Detector level Particle level $E_{\mathrm{T},\gamma_{1(2)}} > 40(30) \; GeV, \quad |\eta_{\gamma}| < 2.37 \; \mathrm{excluding} \; 1.37 < |\eta_{\gamma}| < 1.52$ Photon kinematics Photon identification stable, not from hadron decay tight $E_{\rm T, \gamma}^{\rm iso, 0.2} < 0.05 \cdot E_{\rm T, \gamma}$ $E_{\rm T, \gamma}^{\rm iso, 0.2} < 0.09 \cdot E_{\rm T, \gamma}$

- Observables constructed from two photons in final state
 - $E_T(\gamma_1), E_T(\gamma_2)$
 - $m(\gamma\gamma), p_{T}(\gamma\gamma), \Delta\Phi(\gamma,\gamma)$

$$\phi_{\eta}^* = \tan \frac{\pi - |\Delta \phi_{\gamma \gamma}|}{2} \sin \theta_{\eta}^* \quad a_{T,\gamma \gamma} = 2 \cdot \frac{|p_{\gamma_1}^x p_{\gamma_2}^y - p_{\gamma_1}^y p_{\gamma_2}^x|}{|(p_{\gamma_1} - p_{\gamma_2})_T|}$$

 $N_{\gamma} > 2$, $\Delta R_{\gamma\gamma} > 0.4$

$$|\cos\theta^*|^{(CS)} = \left| \frac{\sinh(\Delta\eta_{\gamma\gamma})}{\sqrt{1 + (p_{T,\gamma\gamma}/m_{\gamma\gamma})^2}} \cdot \frac{2E_{T,\gamma_1}E_{T,\gamma_2}}{m_{\gamma\gamma}^2} \right|$$

Main background: jets misidentified as photons

Common main background: $jet \rightarrow ... + \pi^{0}(\rightarrow \gamma \gamma)$

- Estimated using background-enriched control regions with looser selections on photon identification and isolation
- Basic idea for γ+2j analysis:
 Sideband ("ABCD") technique

$$N_A^{\text{sig}} = N_A - R_{\text{bg}} \cdot (N_B - f_B N_A^{\text{sig}}) \cdot \frac{(N_C - f_C N_A^{\text{sig}})}{(N_D - f_D N_A^{\text{sig}})}$$

Cells at the 2nd laver of the EM calorimeter

Photon isolation

Main background: jets misidentified as photons

Common main background: jet $\rightarrow ... + \pi^0 (\rightarrow \gamma \gamma)$

- Estimated using background-enriched control regions with looser selections on photon identification and isolation
- Basic idea for γ+2j analysis:
 Sideband ("ABCD") technique

for i = 3

$$N_A^{\text{sig}} = N_A - R_{\text{bg}} \cdot (N_B - f_B N_A^{\text{sig}}) \cdot \frac{(N_C - f_C N_A^{\text{sig}})}{(N_D - f_D N_A^{\text{sig}})}$$

For γγ: ABCD-based likelihood fit
+ extension to "4D" (i=1 ... 16)
+ more processes p=γγ, γj, jγ, jj(, ee, PU)

$$f_{p,i} = f_{p,i}(\varepsilon_{p,o_1}^{\text{iso}}, \varepsilon_{p,o_2}^{\text{iso}}, R_p^{\text{iso}}, \varepsilon_{p,o_1}^{\text{id}}, \varepsilon_{p,o_2}^{\text{id}}, R_p^{\text{iso-id}}, R_{p,o_1}^{\text{iso-id}}, R_{p,o_2}^{\text{iso-id}})$$

$$\begin{pmatrix} \varepsilon_{p,o_1}^{\text{iso}} & \varepsilon_{p,o_2}^{\text{iso}} & \varepsilon_{p,o_1}^{\text{id}} & \varepsilon_{p,o_2}^{\text{id}} \\ \varepsilon_{p,o_1}^{\text{iso}} & (1 - \varepsilon_{p,o_2}^{\text{iso}}) & \varepsilon_{p,o_1}^{\text{id}} & \varepsilon_{p,o_2}^{\text{id}} \\ (1 - \varepsilon_{p,o_1}^{\text{iso}}) & \varepsilon_{p,o_2}^{\text{iso}} R_p^{\text{iso}} & \varepsilon_{p,o_1}^{\text{id}} & \varepsilon_{p,o_2}^{\text{id}} \end{pmatrix}$$

$$= \begin{pmatrix} (1 - \varepsilon_{p,o_1}^{\text{iso}}, R_{p,o_1}^{\text{iso-id}}) & (1 - \varepsilon_{p,o_2}^{\text{iso}}, R_p^{\text{iso-id}}) & (1 - \varepsilon_{p,o_1}^{\text{id}}) & (1 - \varepsilon_{p,o_2}^{\text{id}}, R_p^{\text{id}}) \end{pmatrix}$$

Diphoton identification region

Cells at the 2nd layer of the EM calorimete

Photon isolation

Subleading backgrounds in yy

- Photons faked by (or radiated off) electrons
 - Estimated by MC
 - 3% inclusively

• Significant only in m, ~m,

- <u>Pile-up</u>: two γ+jet events from different pile-up vertices!
 - 1% inclusively
 - Significant only in cos θ* → 1 configurations
 - Sophisticated data-driven estimation

- Total uncertainties in 3% 15% range
 - Dominated by **jet/photon energy scale** uncertainties
- Note: Negligible background fit uncertainty due to high $E_T \rightarrow$ high signal purity (>95%)

- Dominant uncertainties:
 - Jet **background estimation** uncertainty from variation of fit assumptions
 - Modelling of photon isolation variable in MC and with pile-up
- Photon energy/identification only subleading
 - Different from γ +2j, where background unc negligible
- Total integrated uncertainty: 7.8% (syst) + 0.3% (stat)
- Largest uncertainties in **low m**_{yy} region: 25%
 - First measurement in this region!
 - Low purity and low data statistics in this multi-jet dominated region → large background estimation unc

- Impressive impact from perturbative QCD even on **inclusive** γγ **rate!**
 - Generally good modelling of **perturbative regions** by the most precise predictions at NNLO and multi-leg merged NLO
 - Fixed-order predictions not valid in **soft/collinear regions**, e.g. low $p_T(\gamma\gamma)$
- Theory prediction uncertainties dominated by QCD scale variations
 - Subleading uncertainties from PDFs, α_s , fragmentation scale (Diphox)

Results for yy

- $m_{\gamma\gamma}$ sculpted by $p_{T,\gamma}$ cuts
 - below peak (≤70 GeV) only populated through multi-jet configurations
 - best modelled by higher-order predictions, but still only barely within unc's

- Scattering angle with respect to beam axis in Collins-Soper frame
 - CS frame restores symmetry for configurations with $p_T(\gamma\gamma)>0$
- Interesting behaviour for $\cos \theta^* \rightarrow 1$
 - sensitive to **uncorrelated photons**, e.g. through multiple jets

- Further variables reveal similar features
 - back-to-back configuration sensitive to soft/collinear emissions
 - → fixed-order not valid, well modelled by MEPS@NLO (Sherpa)
 - regions with large decorrelation modelled well in NNLO (NNLOJET) and MEPS@NLO (Sherpa), but NLO (DIPHOX) struggling, as effectively only LO accurate for these observables

- Prompt photons are a pillar of the LHC physics program
 - Very active prompt photon measurement program in ATLAS
- γ +2j production measured by ATLAS with 36/fb at 13 TeV
 - Single-photon measurements in association with jets provide direct high-statistics probe of hard jet production
 - Good description by MC models with higher-order matrix elements

- Photon-pair measurements rely on lower-energy photons and background estimation is more complicated
- Impressive performance of higher-order QCD predictions

Thanks for your attention! Questions?

Backup material

Photon isolation in signal and background

γγ: assumptions and uncertainties in fit model

- Ideal case: no correlation between isolation and identification...
 - Corresponds to R_{bg} =1 in ABCD method
 - Realistically: slight correlations, e.g. EM energy near photon candidate can distort ID variables
- ... and between γ_1 and γ_2
 - Realistically: slight correlations, e.g. isolation energy for photons with small angular separation

- Correction factors R^{iso-id}, R^{id}, R^{iso} taken into account in fit model
 - Estimated with MC simulation for prompt photons
 - Estimated from MC + validation region data for fake photons in γj/jγ/jj background processes:
 - » $0.93 < R^{iso-id}(j) < 1.0 \pm unc from MC statistics and (MC data)_{vi}$ difference
 - » $R^{iso}(\gamma j/j\gamma) = 0.95 \pm 0.05$ to cover difference between $MC_{\gamma\gamma}$ and jj data
 - » $R^{id}(\gamma j/j\gamma)$ estimated from $MC_{\gamma\gamma}$ due to negligible impact
 - Further input parameters: selection efficiencies $\epsilon^{iso}_{\ \gamma}(\gamma j/j\gamma)$ are estimated from MC
- All other parameters floating in the fit \rightarrow derived from data

Data-driven normalisation from fit of vertex information of **converted** photons

Data-driven **background fit** in PU events ($|\Delta z| > 48$ mm) similar to main analysis

MC pseudo-sample with two overlayed γj events

- Jet background estimation uncertainty
 - From variations of fit assumptions: $R^{iso-id}(j)$, $R^{iso}(\gamma j/j\gamma)$
- Modelling of photon isolation variable
 - Peak position varied by reweighting (or not) MC to data
 - Width of distribution affected by amount of pile-up, varied by reweighting pile-up profile in simulation
- Photon energy/identification not among leading uncertainties
 - Different from γ +2j, where background unc negligible
 - Lower purity than in γ +2j due to low E_T photons: $E_{T,\gamma 1(\gamma 2)} > 40$ (30) GeV vs. $E_{T,\gamma} > 150$ GeV

Source	Relative uncertainty [%]	
Background estimation	4.3	
$R_j^{\mathrm{iso-id}}$	4.2	
$\gamma\gamma$ pile-up background	0.6	
$R_{\gamma i}^{ m iso}$	0.5	
Electron background	0.2	
Photon isolation	4.0	
Pile-up reweighting	3.5	
Photon isolation	1.9	
Photon identification	3.0	
Other	4.1	
Data-period stability	3.6	
Luminosity	1.7	
Trigger efficiency	0.7	
MC Sherpa/Pythia	0.6	
Signal modelling of E_{T,γ_1}	0.2	
MC statistical uncertainty	0.1	
Unfolding method	< 0.1	
Photon energy	0.5	
Total systematic uncertainty	7.8	
Data statistical uncertainty	0.3	

Backup: Uncertainties for γγ

Backup: Perturbative QCD predictions

Backup: Perturbative uncertainties in Sherpa

Inclusive isolated photon production

ATLAS measurement of inclusive photon production with 36/fb [1908.02746]

	Phase-space region					
Requirement on E_{T}^{γ}	$E_{ m T}^{\gamma} > 125 { m GeV}$					
Isolation requirement	$E_{\rm T}^{\rm iso} < 4.2 \times 10^{-3} \times E_{\rm T}^{\gamma} + 4.8 \; {\rm GeV}$					
Requirement on $ \eta^{\gamma} $	$ \eta^{\gamma} < 0.6$	$0.6 < \eta^{\gamma} < 1.37$	$1.56 < \eta^{\gamma} < 1.81$	$1.81 < \eta^{\gamma} < 2.37$		
Number of events with $125 < E_{\mathrm{T}}^{\gamma} < 150 \; \mathrm{GeV}$	182 754	248 538	74 405	144713		
Number of events with $E_{\rm T}^{\gamma} > 150 \; {\rm GeV}$	2 030 144	2 696 077	814 623	1 471 953		

