

Measurement of jet substructure and jet fragmentation using the ATLAS detector

Jennifer Roloff, on behalf of the ATLAS Collaboration

ICHEP 2020

why jet substructure measurements?

- Jet substructure provides insight into several different scales of QCD
 - Can be used to understand everything from fixed order effects to parton showers to hadronization
- Many aspects of jets require Monte Carlo (MC) generators
 - Jet modeling is one of the dominant sources of uncertainties for many analyses
 - Deeper understanding of jet formation can be used to develop better models of jets
- Better understanding of jets leads to better, more robust observables for tagging jets

- Jet formation is complicated, and is not fully describable by perturbation theory
 - Rely on Monte Carlo models in order to produce predictions involving jets
- Jet fragmentation measurements study the distribution of particles within a jet
 - Includes observables such as the number of charged particles, the radial profile, and more
 - Energy dependence calculable in perturbation theory
- Important input for tuning MC, and some significant disagreements between data and MC
- Using tracks to calculate fragmentation to improve precision

- Jet fragmentation does not depend strongly on η, just on the initiating parton
- Central jets tend to be gluon initiated more often than forward jets

Measuring forward and central jets separately gives us access to differences between quarks and gluons

- The measured distributions are a linear combination of the quark and gluon distributions, multiplied by the fraction of quarks and gluons
 - Can invert this to extract the quark and gluon distributions in data
- Two methods:
 - Use the quark and gluon fractions determined in an MC generator (e.g. Pythia)
 - Use topic modeling to extract the distributions, which uses a minimization to separate mutually irreducible distributions

- Both methods provide similar results for the extracted quark and gluon distributions
- First time topic modeling has been used in a measurement!
 - Provides more model-independent way of extracting this information

soft drop grooming

- Jet substructure observables (like the jet mass,
 D2, etc) are not typically calculable
 - Contributions from non-global logarithms make it difficult to produce accurate calculations
- Soft drop is a type of grooming algorithm → removes soft and wide angle radiation from a jet
 - Does this in a theoretically nice way such that the non-global logarithms are removed
 - Able to produce accurate calculations beyond leading logarithmic accuracy

- Measured the soft drop jet mass in dijet events
 - Measured the relative mass (m/p_T) to reduce mass dependence on p_T of the jet
 - Used logarithmic scale for sensitivity to the resummation region
 - $\rho = \log(m_2/p_T^2)$
- Compared to three different calculations of the jet mass

- Can extract the quark and gluon distributions for these as well
 - Using track-based measurement to improve precision of results
 - In the resummation region, the slope should be proportional to α_s x C_F
 - Gluon slope is larger than quark slope in this region
- Quark and gluon fractions currently taken from Pythia, so some model dependence
- Dominant uncertainty is the jet modeling

The Lund Plane

- A jet may be approximated as soft emissions around a hard core which represents the originating quark or gluon In(1/z)
- Emissions may be characterized by
 - z = relative momentum of emission wrt jet core
 - Arr ΔR = angle of emission relative to the jet core

The jet mass is just one diagonal line in this space

So what if we could measure the whole thing?

 $ln(R/\Delta R)$

The Lund Plane is the phase space of these emissions: it naturally factorises perturbative and non-perturbative effects, UE/MPI, etc.

- Unfolded the primary Lund plane in dijet events
- Use tracks associated to the jets in order to have precise measurements for small splittings
 - Unfolded to charged particle level

- Unfolded the primary Lund plane in dijet events
- Use tracks associated to the jets in order to have precise measurements for small splittings
 - Unfolded to charged particle level

- Non-trivial differences between different generators and unfolded data
- Region dominated by hard and wideangle splitting is affected by parton shower
- Hadronization effects in region with non-perturbative effects

summary

- Jet substructure measurements are a powerful tool for studying QCD across multiple scales
 - New grooming algorithms enable comparisons of measurements and theoretical predictions for substructure observables
- New observables make it possible to separate out different effects into different regions of a measurement
 - First measurement of the Lund jet plane demonstrates importance of factorization
- Gluon measurements are critical for improving jet modeling
 - New methods such as topic modeling allow for model-independent extractions of this behavior

- Similar method may be used for understanding the issues within a jet
- Recluster constituents with C/A algorithm
- Decluster the jet, and plot emission on the plane
 - Emissions characterized based on their angle (ΔR), and the hardness of the splitting and $z = p_T^{emission} / p_T$
- Continue declustering the harder branch until no more emissions remain

 $\ln 1/\Delta$

- Unfolded the primary Lund plane in dijet events
- Use tracks associated to the jets in order to have precise measurements for small splittings
 - Unfolded to charged particle level

2004.03540

- Non-trivial differences between different generators and unfolded data
- Region dominated by hard and wide-angle splitting is affected by parton shower
- Only small effects seen from UE/ MPI (as expected)

