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- Jet substructure provides insight into several different scales of QCD

~ Can be used to understand everything from fixed order effects to parton
showers to hadronization

- Many aspects of jets require Monte Carlo (MC) generators
- Jet modeling is one of the dominant sources of uncertainties for many analyses

- Deeper understanding of jet formation can be used to develop better models of
jets

- Better understanding of jets leads to better, more robust observables for tagging
jets



- Jet formation is complicated, and is not fully

describable by perturbation theory

~ Rely on Monte Carlo models in order to produce

predictions involving jets

<nch>

- Jet fragmentation measurements study the distribution

of particles within a jet

~ Includes observables such as the number of charged

particles, the radial profile, and more

- Energy dependence calculable in perturbation theory

» Important input for tuning MC, and some significant

disagreements between data and MC

- Using tracks to calculate fragmentation to improve

precision
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- Jet fragmentation does not depend
strongly on n, just on the initiating parton

~ Central jets tend to be gluon initiated

more often than forward jets
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- Measuring forward and central jets separately
gives us access to differences between quarks

and gluons
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~ The measured distributions are a linear
combination of the quark and gluon distributions,
multiplied by the fraction of quarks and gluons

~ Can invert this to extract the quark and gluon
distributions Iin data

> Two methods:

- Use the quark and gluon fractions determined
in an MC generator (e.g. Pythia)

- Use topic modeling to extract the distributions,
which uses a minimization to separate mutually
Irreducible distributions

(1/N

nts) dN/dnCh
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- Both methods provide similar results for the extracted quark and gluon distributions
-~ First time topic modeling has been used in a measurement!

- Provides more model-independent way of extracting this information
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soft drop grooming

» Jet substructure observables (like the jet mass,
D2, etc) are not typically calculable

» Contributions from non-g
t difficult to produce acc

obal logarithms make

Jrate calculations

» Soft drop Is a type of grooming algorithm —
removes soft and wide angle radiation from a jet

» Does this In a theoretically nice way such that
the non-global logarithms are removed

» Able to produce accurate calculations beyonad
leading logarithmic accuracy




the unfolded
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» Measured the soft drop jet
mass in dijet events

» Measured the relative mass
(m/pT) to reduce mass
dependence on pr of the jet

» Used logarithmic scale for
sensitivity to the resummation
region

» p =log(mz/ pt?)

» Compared to three different
calculations of the jet mass
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the unfolded jet mass
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the unfolded jet mass

~ Can extract the quark and gluon
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- Dominant uncertainty is the jet modeling
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The LUﬂd Plaﬂe The jet mass is just one

diagonal line in this space
» A Jet may be approximated as soft emissions

around a hard core which represents the L g | e
originating quark or gluon — Regions of the BECRESR N
= Lund Jet Plane P, SN

» Emissions may be characterized by < 5 47 dAR Do B
» z = relative momentum of emission wrt jet I e

COore

» AR = angle of emission relative to the jet core

ZE (1-2)E

So what if we could
measure the whole

¢
£ thing ?

S % '

collinéar

IN(R/AR)

AR
The Lund Plane is the phase space of these

emissions: it naturally factorises perturbative
and non-perturbative etfects, UE/MPI, etc.

14
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- Jet substructure measurements are a powerful tool for studying QCD across
multiple scales

- New grooming algorithms enable comparisons of measurements and theoretical
predictions for substructure observables

~ New observables make it possible to separate out different effects into different
regions of a measurement

~ First measurement of the Lund jet plane demonstrates importance of factorization
~ Gluon measurements are critical for improving jet modeling

~ New methods such as topic modeling allow for model-independent extractions of
this behavior

18
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Recluster constituents with C/A
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» Emissions characterized based on

their angle
of the sp

(AR), and the hardness

itting and z = premission [/ By

Continue declustering the harder
branch until no more emissions
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Ihe Lunad Jet Plane

Regions of the

g UE/MPI Lund Jet Plane
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» Non-trivial differences between
different generators and unfolded
data

» Reglion dominated by hard anad
wide-angle splitting Is affected by
parton shower

» Only small effects seen from UE/
MPI (as expected)
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