
Measurement of jet substructure 
and jet fragmentation using the 

ATLAS detector
Jennifer Roloff, 

on behalf of the ATLAS 
Collaboration 

ICHEP 2020

1



‣ Jet substructure provides insight into several different scales of QCD 

‣ Can be used to understand everything from fixed order effects to parton 
showers to hadronization


‣ Many aspects of jets require Monte Carlo (MC) generators


‣ Jet modeling is one of the dominant sources of uncertainties for many analyses


‣ Deeper understanding of jet formation can be used to develop better models of 
jets


‣ Better understanding of jets leads to better, more robust observables for tagging 
jets

why jet substructure measurements?
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‣ Jet formation is complicated, and is not fully 
describable by perturbation theory


‣ Rely on Monte Carlo models in order to produce 
predictions involving jets


‣ Jet fragmentation measurements study the distribution 
of particles within a jet


‣ Includes observables such as the number of charged 
particles, the radial profile, and more


‣ Energy dependence calculable in perturbation theory


‣ Important input for tuning MC, and some significant 
disagreements between data and MC


‣ Using tracks to calculate fragmentation to improve 
precision

jet fragmentation 
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1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ Jet fragmentation does not depend 
strongly on η, just on the initiating parton


‣ Central jets tend to be gluon initiated 
more often than forward jets

jet fragmentation 
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‣ Measuring forward and central jets separately 
gives us access to differences between quarks 
and gluons

1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ The measured distributions are a linear 
combination of the quark and gluon distributions, 
multiplied by the fraction of quarks and gluons


‣ Can invert this to extract the quark and gluon 
distributions in data


‣ Two methods:


‣ Use the quark and gluon fractions determined 
in an MC generator (e.g. Pythia)


‣ Use topic modeling to extract the distributions, 
which uses a minimization to separate mutually 
irreducible distributions

jet fragmentation 
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1906.09254

https://arxiv.org/pdf/1802.00008.pdf
https://arxiv.org/pdf/1802.00008.pdf
https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ Both methods provide similar results for the extracted quark and gluon distributions


‣ First time topic modeling has been used in a measurement!


‣ Provides more model-independent way of extracting this information

jet fragmentation 
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1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf
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soft drop grooming 
‣ Jet substructure observables (like the jet mass, 

D2, etc) are not typically calculable 

‣ Contributions from non-global logarithms make 
it difficult to produce accurate calculations 

‣ Soft drop is a type of grooming algorithm → 
removes soft and wide angle radiation from a jet 

‣ Does this in a theoretically nice way such that 
the non-global logarithms are removed 

‣ Able to produce accurate calculations beyond 
leading logarithmic accuracy 
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the unfolded jet mass
‣ Measured the soft drop jet 

mass in dijet events 

‣ Measured the relative mass 
(m/pT) to reduce mass 
dependence on pT of the jet 

‣ Used logarithmic scale for 
sensitivity to the resummation 
region 

‣ ⍴ = log(m2 / pT2) 

‣ Compared to three different 
calculations of the jet mass

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


the unfolded jet mass
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1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf
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Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

the unfolded jet mass
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1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf
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Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

Very good agreement 
with both analytical 

predictions in 
resummation region 

the unfolded jet mass
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1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf
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the unfolded jet mass
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Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

Very good agreement 
with both analytical 

predictions in 
resummation region 

NLO+NLL agrees 
better than LO+NNLL 
in fixed order region

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf
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the unfolded jet mass
1912.09837

‣ Can extract the quark and gluon 
distributions for these as well


‣ Using track-based measurement to 
improve precision of results


‣ In the resummation region, the slope 
should be proportional to ⍺s x CF


‣ Gluon slope is larger than quark slope 
in this region


‣ Quark and gluon fractions currently taken 
from Pythia, so some model dependence


‣ Dominant uncertainty is the jet modeling

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


The Lund Plane

The Lund Plane is the phase space of these 
emissions: it naturally factorises perturbative 
and non-perturbative effects, UE/MPI, etc.

m ~ z*ΔR2 

The jet mass is just one 
diagonal line in this space 

…

So what if we could 
measure the whole 

thing?
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‣ A jet may be approximated as soft emissions 
around a hard core which represents the 
originating quark or gluon 

‣ Emissions may be characterized by 

‣ z = relative momentum of emission wrt jet 
core 

‣ ∆R = angle of emission relative to the jet core



The Lund Jet Plane
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2004.03540

‣ Unfolded the primary Lund 
plane in dijet events 

‣ Use tracks associated to the 
jets in order to have precise 
measurements for small 
splittings 

‣ Unfolded to charged particle 
level

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540


The Lund Jet Plane
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‣ Unfolded the primary Lund 
plane in dijet events 

‣ Use tracks associated to the 
jets in order to have precise 
measurements for small 
splittings 

‣ Unfolded to charged particle 
level

2004.03540

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Non-trivial differences between 
different generators and unfolded data 

‣ Region dominated by hard and wide-
angle splitting is affected by parton 
shower 

‣ Hadronization effects in region with 
non-perturbative effects

The Lund Jet Plane
2004.03540

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540


‣ Jet substructure measurements are a powerful tool for studying QCD across 
multiple scales


‣ New grooming algorithms enable comparisons of measurements and theoretical 
predictions for substructure observables


‣ New observables make it possible to separate out different effects into different 
regions of a measurement


‣ First measurement of the Lund jet plane demonstrates importance of factorization


‣ Gluon measurements are critical for improving jet modeling


‣ New methods such as topic modeling allow for model-independent extractions of 
this behavior

summary

18



19

‣ Similar method may be used for 
understanding the issues within a jet 

‣ Recluster constituents with C/A 
algorithm 

‣ Decluster the jet, and plot emission 
on the plane  

‣ Emissions characterized based on 
their angle (ΔR), and the hardness 
of the splitting and z = pTemission / pT 

‣ Continue declustering the harder 
branch until no more emissions 
remain

1807.04758
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The Lund Jet Plane

https://arxiv.org/abs/1807.04758
https://arxiv.org/abs/1807.04758


The Lund Jet Plane
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2004.03540

‣ Unfolded the primary Lund 
plane in dijet events 

‣ Use tracks associated to the 
jets in order to have precise 
measurements for small 
splittings 

‣ Unfolded to charged particle 
level

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Non-trivial differences between 
different generators and unfolded 
data 

‣ Region dominated by hard and 
wide-angle splitting is affected by 
parton shower 

‣ Only small effects seen from UE/
MPI (as expected)

The Lund Jet Plane
2004.03540

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540

