# Inclusive Jet Measurements with the ATLAS Experiment at LHC

#### Peter Loch<sup>a,b</sup>

(for the ATLAS Collaboration)

<sup>a</sup>Department of Physics, University of Arizona, Tucson, Arizona, USA <sup>b</sup>CERN, Geneva, Switzerland











## Study of QCD with Jets in ATLAS at the LHC

## From inclusive jet cross section measurements ...

Strong interaction in a wide dynamic range

QCD at highest orders of calculations

Structure of the proton at very high momentum transfers

Access to parton density functions (PDFs)

## ... to tests of emission modeling ...

Hard emissions – hadronic event shapes with jets

Test of predictions with multi-jet final states

Soft emissions – looking inside jets

See talk by Jennifer Roloff on Measurements of jet substructure and jet fragmentation using the ATLAS detector

Strong interactions and hadron physics (this track) III, Thursday, July 30, 2020, 12:35pm

## ... and the running of the strong coupling constant

Measurement of running  $\alpha_s$  with energy-energy correlations Testing confinement at highest (TeV) scales



## Jet Measurements in ATLAS

#### Standard jets for physics in LHC Run 2

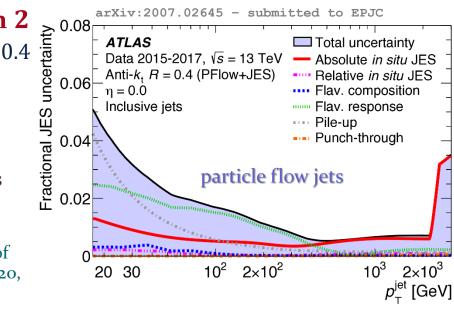
Anti- $k_t$  jets with distance parameter R = 0.4

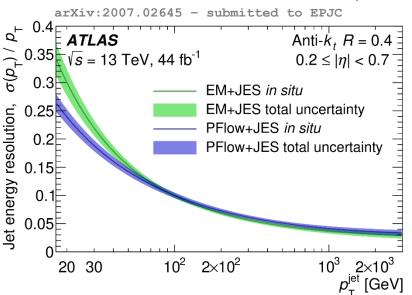
Use calorimeter signals or particle flow objects (combined calorimeter signals & tracks)

#### High precision reconstruction

O(1%) total jet energy scale uncertainties More details in talk by Eva Hansen on *Jet* reconstruction and calibration in ATLAS

Operation, Performance and upgrade of present detectors IV, Friday, July 31, 2020, 9:50am


## Standard Model precision measurements


#### Run 2 first year measurements

Inclusive jet and dijet cross section corresponding to  $\int \mathcal{L}dt \approx 3.2 \, \text{fb}^{-1}$  of collected data

Full Run 2 data set  $(\int \mathcal{L}dt \approx 139 \, \text{fb}^{-1})$ 

Hadronic event shapes Strong coupling constant  $\alpha_S$ 





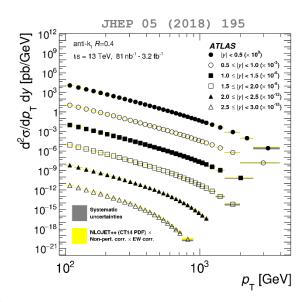


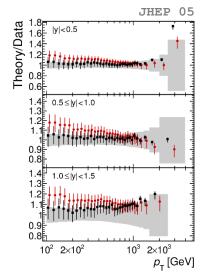
## **Inclusive Jet Production**

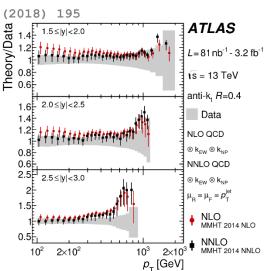
#### Inclusive jet and di-jet cross section

JHEP 05 (2018) 195

Data collected from pp collisions at  $\sqrt{s} = 13$  TeV in 2015


Inclusive jet cross section measured in terms of jet transverse momentum with 100 GeV  $< p_{\rm T}^{\rm jet} <$  3.5 TeV and  $|y^{\rm jet}| <$  3


Inclusive dijet production cross section measured in terms of the invariant mass of the two leading jets 900 GeV <  $m_{\rm jj}$  < 9 TeV and  $y^*$  =  $\left|\left(y_{\rm lead}^{\rm jet} - y_{\rm sublead}^{\rm jet}\right)/2\right| < 3$ 


#### Comparison to QCD predictions

NLO & NNLO calculations with non-perturbative QCD and electroweak corrections and various PDFs

Comparison to theory favors QCD @ NNLO for  $|y^{jet}| < 2$ 









## **Hadronic Event Shapes with Jets**

#### **Event shapes with jets**

arXiv:2007.12600 [hep-ex]

#### Proxy for energy flow shapes in collision event

Measurement tests prediction power of fixed-order calculations, parton shower modeling, etc.

#### Clear expectation values for given topology

Shapes vanish for  $2 \rightarrow 2$  processes with perfect forward-backward (back-to-back in transverse plane) symmetry – at maximum for uniform energy (transverse momentum) distribution

#### Probe for multi-jet energy flow at highest scales

 $\mathcal{O}(\text{TeV}) \text{ for } \sqrt{s} = 13 \text{ TeV}$ 

Evaluated in multi-jet final states ( $n^{\rm jet} \geq 2$ ) as function of hardness of interaction Representative observable for interaction activity is  $H_{\rm T2} = p_{\rm T}^{\rm lead} + p_{\rm T}^{\rm sublead}$ 

#### Measurement

#### Jet and event selection

Consider only fully calibrated anti- $k_t$  jets with R=0.4 clustered from particle flow objects with  $p_{\rm T}^{\rm jet}>100$  GeV,  $\left|\eta^{\rm jet}\right|<2.4$ 

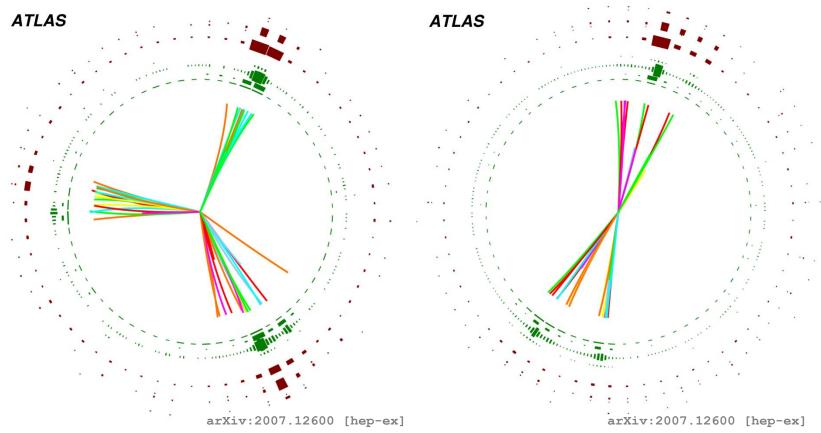
Multi-jet events with  $n^{\text{jet}} \ge 2$ ,

 $H_{\rm T2} > 1$  TeV selected

#### Presentation of results

Differential cross-sections as ratio to fiducial cross section  $\sigma(n^{\text{jet}} \ge 2)$ 

$$1/\sigma(n^{\text{jet}} \ge 2) d\sigma/d\{T_{\perp}, T_m, S_{\perp}, A, C, D\}$$
 in  $(H_{\text{T2}}, n^{\text{jet}})$  bins\*

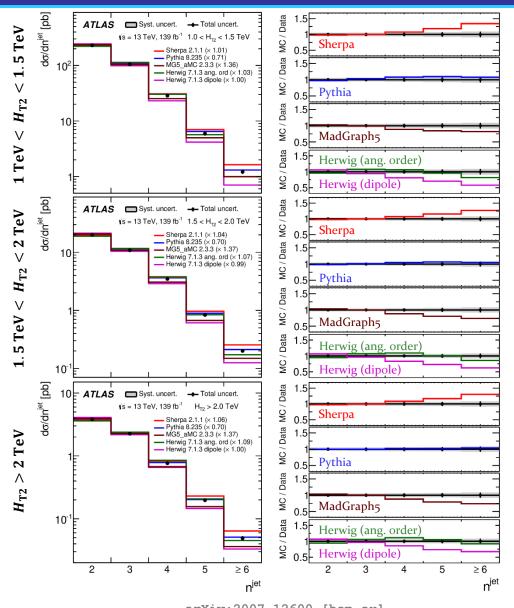

Unfolded data is compared to various Monte Carlo generators

\*see <u>additional material</u> for description of all used event shape observables



## **Hadronic Event Shapes with Jets**

## **Examples: transverse thrust & transverse sphericity**




 $n^{\rm jet} = 3$ , high values of  $\tau_{\perp} = 1 - T_{\perp}$  and  $S_{\perp}$ 

 $n^{\rm jet} = 5$ , low values of  $\tau_{\perp}$  and  $S_{\perp}$ 



## **Modeling of Jet Multiplicities**



#### Fiducial cross section

#### Measured as function of $n^{jet}$

Evaluated in same three regions of  $H_{T2}$  used for event shape measurements – provides normalization

#### Modeling $d\sigma/dn^{\rm jet}$ shapes

#### Pythia 8.235

 $2 \rightarrow 2$ , LO accuracy

Generally good agreement for all  $n^{\text{jet}}$ 

#### Sherpa 2.2.1

 $2 \rightarrow \{2, 3\}$ , LO accuracy (multi-leg)

Overestimation (increasing) for  $n^{\text{jet}} > 4$ 

#### Herwig 7.1.3 (angular ordered PS)

 $2 \rightarrow 2$  NLO accuracy,  $2 \rightarrow 3$  LO

Good description with slight underestimation for  $n^{\text{jet}} \ge 6$ 

#### Herwig 7.1.3 (dipole PS)

 $2 \rightarrow 2$  NLO accuracy,  $2 \rightarrow 3$  LO

Good description for low  $n^{\text{jet}}$ , underestimation for higher  $n^{\text{jet}}$ 

#### MadGraph5\_aMC 2.3.3

 $2 \rightarrow \{2, 3, 4\}$  NLO accuracy

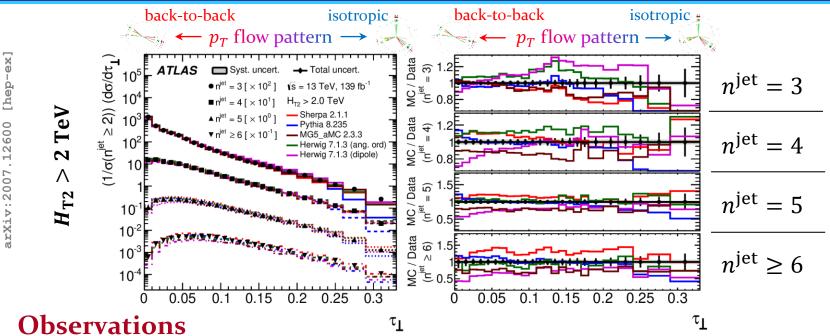
Good description for low  $n^{\rm jet}$ , underestimation for higher  $n^{\rm jet}$ 

#### Modeling normalization

Well predicted at low  $n^{jet}$ 

Only small differences between models

#### Large spread in normalization at high $n^{\text{jet}}$


Sherpa predicts 30% more than data

Herwig (dipole PS), MadGraph predict 30% less

arXiv:2007.12600 [hep-ex]



## **Transverse Thrust with Jets**



#### Evolution with increasing hardness of interaction

More events with more isotropic flow at softer interactions (lower  $H_{T2}$ ) Increasing  $H_{T2}$  yields increased contribution from events with close to back-to-back flow patterns

#### Comparisons to models

#### Evaluation of predictions

Generally fewer isotropic events in MC than in data at low  $n^{\text{jet}}$  – better agreement at higher jet multiplicities

#### Shapes of cross sections

None of the considered MC generators gives good description in full phase space Similar distribution shapes at high  $n^{\text{jet}}$  from all considered model



## **Measurement of Strong Coupling**

## Transverse energy-energy correlations (TEEC)

TEEC function in multi-jet events

$$\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} = \frac{1}{\sigma} \sum_{i,j} \int d\sigma \frac{E_{\mathrm{T},i}E_{\mathrm{T},j}}{E_{\mathrm{T}}^2} \delta(\cos\Delta\varphi_{ij} - \cos\phi),$$
with  $E_{\mathrm{T}} = \sum_{i} E_{\mathrm{T},i}$ 

#### Associated azimuthal asymmetries (ATEEC)

Measures difference between forward ( $\cos \phi > 0$ ) and backward ( $\cos \phi < 0$ ) parts of TEEC

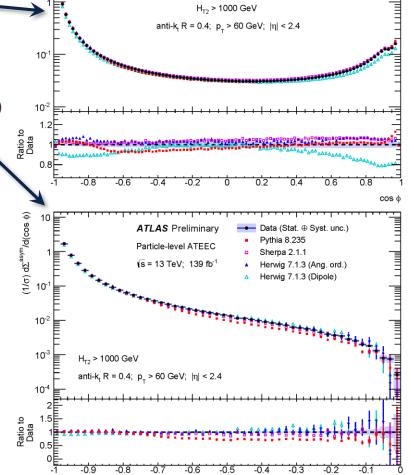
$$\frac{1}{\sigma} \frac{d\Sigma^{\text{asymm}}}{d\cos\phi} = \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \Big|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \Big|_{\pi-\phi}$$

#### **Measurement**

Determine  $\alpha_s$  from evolution of TEEC/ATEEC with varying hard scale

 $H_{\rm T2} = p_{\rm T}^{\rm lead} + p_{\rm T}^{\rm sublead}$  serves as proxy for hard interaction scale Q

Jets


Anti- $k_t$  jets with R = 0.4 from particle flow objects ( $p_T > 60$  GeV,  $|\eta| < 2.4$ )

**Events** 

Two leading jets with  $H_{T2} > 1$  TeV

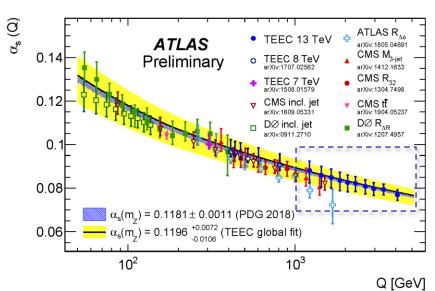
Results

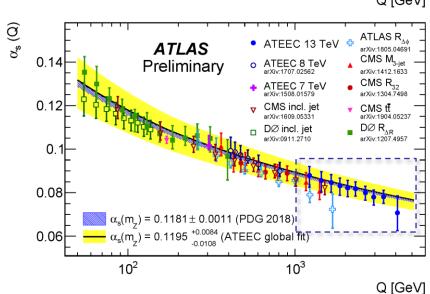
Data unfolded to particle level



ATLAS-CONF-2020-025

Particle-level TEEC


\s = 13 TeV; 139 fb<sup>-1</sup>


Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)



## Evolution of $\alpha_s$ with Momentum Transfer





ATLAS-CONF-2020-025

### Determination of $\alpha_s$

Fit theoretical predictions to measured (A)TEEC distributions

Inclusive  $\alpha_s(m_Z)$  from global fit  $H_{T_2} > 1 \text{ TeV}$ 

Local  $\alpha_s(m_Z)$  fits in bins of  $H_{T2}$ Evolution  $\alpha_s(m_Z) \rightarrow \alpha_s(Q)$  uses NLO solutions to RGE

## Running $\alpha_s$ measurement using (A)TEEC

Tests RGE predictions at the highest energy scales ever

Running of  $\alpha_s(Q)$  for Q > 1 TeV observed in data agrees very well with predictions

#### Inclusive measurement

Compares very well to world average  $\alpha_s(m_Z)$  within uncertainties



## **Conclusions & Outlook**

#### **Inclusive jet measurements**

Early cross section measurement

First results to test QCD calculations at NNLO

Increased precision in jet reconstruction in ATLAS in LHC Run 2

Full Run 2 analysis is under way to provide inclusive jet and dijet cross sections at significantly increased precision over the accessible full phase space

#### **Hadronic event shapes**

Observable deficiencies in modeling of event shapes reconstructed from hard ( $p_T^{\text{Jet}} > 100 \text{ GeV}$ ) jets

Room for improvement of modeling/calculation of final states with  $\geq 3$  hard emissions

#### Measurement of running $\alpha_s$

Extension of measurement to TeV scales

Very good agreement of NLO  $\alpha_s(Q)$  prediction with measurement

#### ICHEP2020 – more from jets in ATLAS

Recent results from QCD

Bogdan Malaescu, *Latest results from top, electroweak and Standard Model* Plenary talk, Wednesday, August 5, 2020, 11:00am

#### Jet measurements

Helena Santos: *Jet measurements in heavy ion collisions with the ATLAS experiment* Heavy ions I, Tuesday, July 28, 2020, 6:06pm

#### **Determination of PDFs**

Mark Sutton: Determination of the parton density functions of the proton with the ATLAS data Strong interactions and hadron physics I (this session), July 28, 2020, 8:30pm

## **Additional Material**

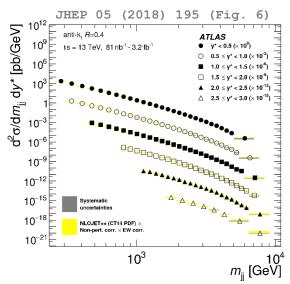


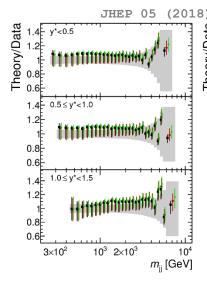
## **Inclusive Dijet Production**

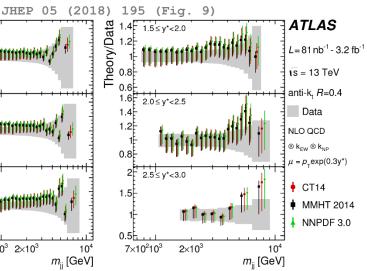
#### Inclusive jet and di-jet cross section

JHEP 05 (2018) 195

Data collected from pp collisions at  $\sqrt{s} = 13$  TeV in 2015


Inclusive jet cross section measured in terms of jet transverve momentum with 100 GeV  $< p_{\rm T}^{\rm jet} < 3.5$  TeV and  $|y^{\rm jet}| < 3$ 


Inclusive dijet production cross section measured in terms of the invariant mass of the two leading jets 900 GeV <  $m_{ii}$  < 9 TeV and  $y^*$  =  $\left| \left( y_{\text{lead}}^{\text{jet}} - y_{\text{sublead}}^{\text{jet}} \right) / 2 \right| < 3$ 


### Comparison to QCD predictions

Various PDF sets considered – acceptable agreement with NLO calculation with initial analysis using only about 2.5% of full dataset

Various PDF sets considered









## **Hadronic Event Shapes With Jets**

#### **Event shapes with jets**

Proxy for energy flow (shapes) in collision event

Measurement tests prediction power of fixed-order calculations, parton shower modeling, etc.

Clear expectation values for given topology

Shapes vanish for  $2 \rightarrow 2$  processes with perfect forward-backward (back-to-back in transverse plane) symmetry – at maximum for uniform energy (transverse momentum) distribution

Probe for multi-jet energy flow at highest scales

 $\mathcal{O}(\text{TeV}) \text{ for } \sqrt{s} = 13 \text{ TeV}$ 

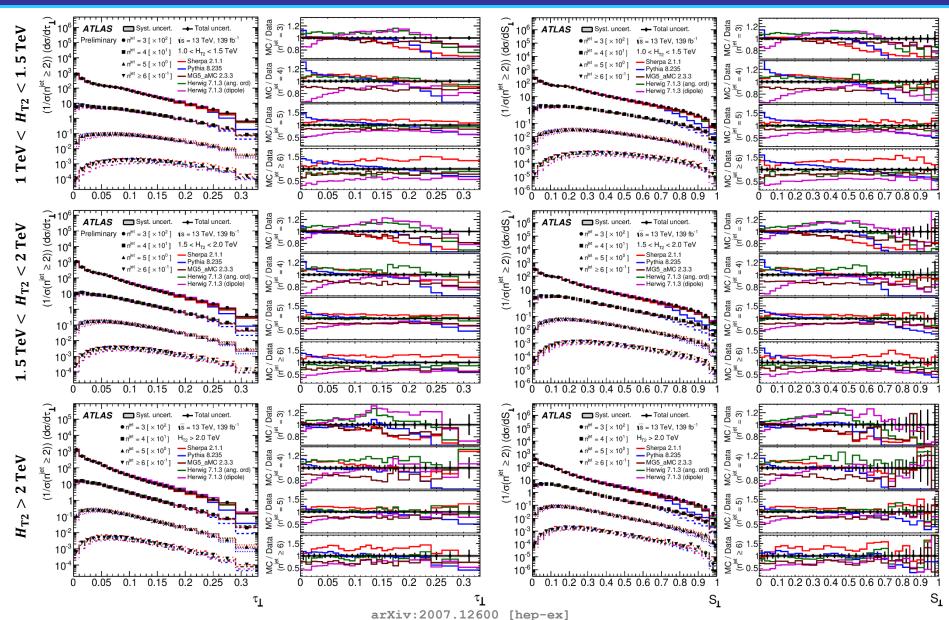
Evaluated in multi-jet final states ( $n^{\rm jet} \ge 2$ ) as function of  $H_{\rm T2} = p_{\rm T}^{\rm lead} + p_{\rm T}^{\rm sublead}$ 

| Event shape           | Name                               | Comments                                                                                                                                                                                                           |
|-----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_{\perp}$           | Transverse thrust                  | $\tau_{\perp} = 1 - T_{\perp},  0 \le \tau_{\perp} < 1 - 2/\pi,  \tau_{\perp} \nearrow \Rightarrow \text{back-to-back topology}$                                                                                   |
| $T_m$                 | Transverse thrust, minor component | $0 \le T_m < 2/\pi$ , $T_m \nearrow \Rightarrow$ increased energy flow outside of plane spanned by thrust and beam axes                                                                                            |
| $\mathcal{S}_{\perp}$ | Transverse sphericity              | from eigenvalues $\{\mu_k\}$ of transverse sphericity tensor $\mathcal{M}_{xy}$ , $S_{\perp} = 2\mu_2/(\mu_1 + \mu_2), \ 0 \le S_{\perp} \le 1, \ \downarrow \ \text{back-to-back}, \ \uparrow \ \text{isotropic}$ |
| Α                     | Aplanarity                         | from eigenvalues $\{\lambda_k\}$ of sphericity tensor $\mathcal{M}_{xyz}$ , $A = \frac{3}{2}\lambda_3$ , $0 \le A \le 1$ , $A \nearrow \Rightarrow$ event less planar                                              |
| С                     | 3-jet observable                   | $C = 3(\lambda_1\lambda_1 + \lambda_1\lambda_3 + \lambda_2\lambda_3), C = 0$ for $n^{\text{jet}} < 3, 0 < C \le 1$ for $n^{\text{jet}} > 2$                                                                        |
| D                     | 4-jet observable                   | $D = 27(\lambda_1 \lambda_2 \lambda_3)$ , $0 \le D \le 1$ , $D = 0$ if all jets are in same plane                                                                                                                  |



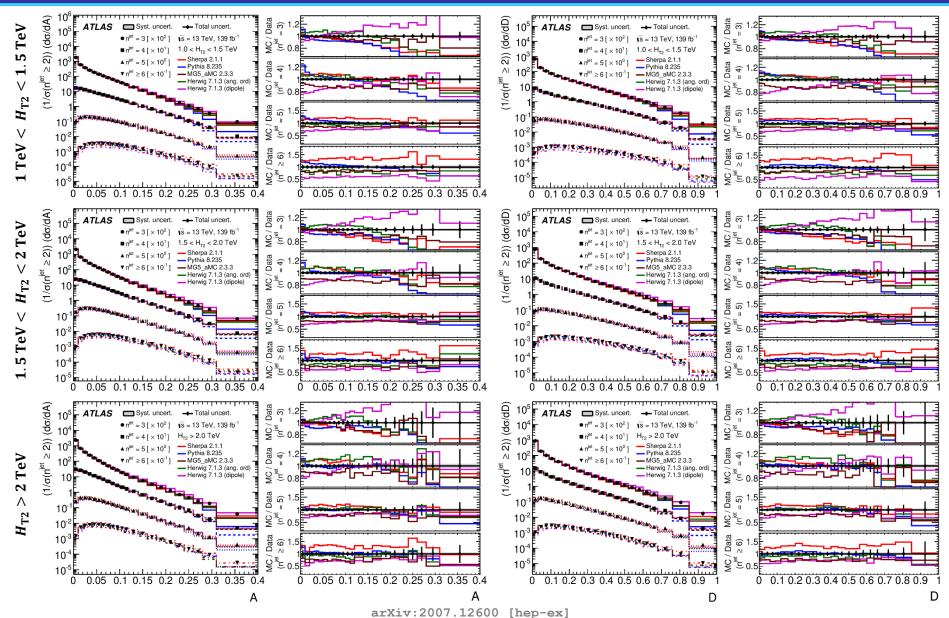
## **Event Shape Variables**

## **Linearized Sphericity Tensor**


$$\mathcal{M}_{xyz} = \frac{1}{\sum_{i} |\vec{p}_{i}|} \sum_{i} \frac{1}{|\vec{p}_{i}|} \begin{pmatrix} p_{x,i}^{2} & p_{x,i}p_{y,i} & p_{x,i}p_{z,i} \\ p_{y,i}p_{x,i} & p_{y,i}^{2} & p_{y,i}p_{z,i} \\ p_{z,i}p_{x,i} & p_{z,i}p_{y,i} & p_{z,i}^{2} \end{pmatrix}$$

### **Transverse Linearized Sphericity Tensor**

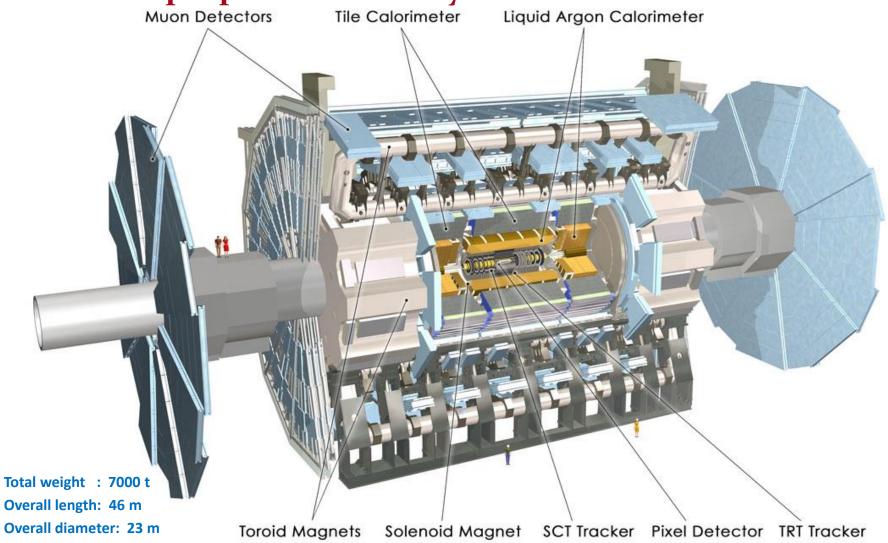
$$\mathcal{M}_{xy} = \frac{1}{\sum_{i} |\vec{p}_{i}|} \sum_{i} \frac{1}{|\vec{p}_{i}|} \begin{pmatrix} p_{x,i}^{2} & p_{x,i} p_{y,i} \\ p_{y,i} p_{x,i} & p_{y,i}^{2} \end{pmatrix}$$




## Hadronic Event Shapes: $\tau_{\perp}(H_{\text{T2}}, n^{\text{jet}}), S_{\perp}(H_{\text{T2}}, n^{\text{jet}})$






## Hadronic Event Shapes: $A(H_{T2}, n^{\text{jet}})$ , $D(H_{T2}, n^{\text{jet}})$





### ATLAS at the LHC

## A multi-purpose detector system



Magnetic field: 2T solenoid + (varying) toroid field



## **Detectors for Hadronic Final State Reconstruction**

#### **Calorimeters**

Provides principal signals for  $e^{\pm}/\tau^{\pm}$  and jet kinematics – and other measurements Full coverage within  $|\eta| < 4.9$  with depth  $\gtrsim 10 \, \lambda_{\rm int}$ 

Highly segmented for energy flow measurements (~188,000 cells)

High granularity in  $\Delta \eta \times \Delta \varphi = 0.025 \times \pi/128$  (central EM) Up to seven depth layers (*samplings*)

#### **Inner detector**

Provides charged particle tracks and vertices

Coverage  $|\eta|$  < 2.5

Jet energy calibration refinement

Provides vertex for jet origin correction/jet vertex association/jet vertex tagging (JVT) Flavor/fragmentation sensitive response measures – mitigation of jet flavor response dependencies

Particle flow

Replace charged response in calorimeter with kinematics from well-measured tracks

Missing transverse momentum soft contributions

Tracks not used or associated with (hard) reconstructed particles and jets

#### **Muon spectrometer**

Reconstructed muons

Contribution to missing transverse momentum reconstruction

Track segments

Proxy for energy leakage behind a jet