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Introduction

◮ The mechanism of meson production in proton-proton
collisions is not fully undersood. The string-model is an
option considered e.g. in Phythia. But not all meson
production can be explained via string fragmentation.

◮ The gluon-gluon fusion for ηc and χc quarkonium
production was shown recently to be the dominant
mechanism [1,2].

◮ In contrast the mechanism of light meson production is
not known. Is there gluon-gluon fusion important effect ?
Very recently we have considered production of f0(980)
[3] and shown that gluon-gluon fusion is important
contribution but not sufficient to describe ALICE data.

◮ Here we consider inclusive production of tensor f2(1270)
meson.
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Ewerz-Maniatis-Nachtmann (EMN) vertex

Γ
(f2γγ)
µνκλ (q1, q2) = 2af2γγ Γ

(0)
µνκλ(q1, q2) F (0)(Q2

1 ,Q
2
2)

−bf2γγ Γ
(2)
µνκλ(q1, q2) F (2)(Q2

1 ,Q
2
2) , (1)

with two rank-four tensor functions,

Γ
(0)

µνκλ
(q1, q2) =

[

(q1 · q2)gµν − q2µq1ν

][

q1κq2λ + q2κq1λ −
1

2
(q1 · q2)gκλ

]

, (2)

Γ
(2)

µνκλ
(q1, q2) = (q1 · q2)(gµκgνλ + gµλgνκ) + gµν (q1κq2λ + q2κq1λ)

−q1νq2λgµκ − q1νq2κgµλ − q2µq1λgνκ − q2µq1κgνλ

−[(q1 · q2)gµν − q2µq1ν ] gκλ , (3)



Ewerz-Maniatis-Nachtmann (EMN) vertex
To obtain af2γγ and bf2γγ in (1) we use the values

Γ(f2 → γγ) = (2.93± 0.40) keV ,

helicity zero contribution ≈ 9% of Γ(f2 → γγ) . (4)

Using the exp. decay rate

Γ(f2 → γγ) =
mf2

80π

(

1

6
m6

f2
|af2γγ |2 + m2

f2
|bf2γγ |2

)

, (5)

and assuming af2γγ > 0 and bf2γγ > 0, we find

af2γγ = αem × 1.17 GeV−3 , (6)

bf2γγ = αem × 2.46 GeV−1 , (7)

where αem = e2/(4π) ≃ 1/137 is the electr. coupling
constant.



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

Poppe and Pascalutsa et al. shown that the most general
amplitude for the process γ∗(q1, λ1) + γ∗(q2, λ2)→ f2(Λ),
describing the transition from an initial state of two virtual
photons to a tensor meson f2 (JPC = 2++) with mass mf2 and
helicity Λ = ±2,±1, 0, involves five independent structures
(invariant amplitudes).



Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

In the formalism presented by Pascalutsa et al. the
γ∗γ∗ → f2(1270) vertex is parameterized as

Γ
(f2γγ)

µνκλ
(q1, q2) = 4παem

{[

Rµκ(q1, q2)Rνλ(q1, q2) +
s

8X
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]
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(
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}
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Pascalutsa-Pauk-Vanderhaeghen (PPV) vertex

where photons with momenta q1 and q2 have virtualities,
Q2

1 = −q2
1 and Q2

2 = −q2
2 , s = (q1 + q2)

2 = 2ν − Q2
1 −Q2

2 ,
X = ν2 − q2

1q2
2 , ν = (q1 · q2), and

Rµν(q1, q2) = −gµν+
1

X

[

ν (q1µq2ν + q2µq1ν)− q2
1q2µq2ν − q2

2q1µq1ν

]

(9)
T (Λ)(Q2

1 ,Q
2
2) are the γ∗γ∗ → f2(1270) transition form factors

for Λ f2(1270) helicity.For the case of helicity zero, there are
two form factors depending on whether both photons are
transverse (superscript T ) or longitudinal (superscript L).
We can express the transition form factors as

T (Λ)(Q2
1 ,Q

2
2) = F (Λ)(Q2

1 ,Q
2
2) T (Λ)(0, 0) . (10)

In the limit Q2
1,2 → 0 only T (0,T ) and T (2) contribute.



EMN vs PPV vertices

Comparing the two approaches at both real photons
(Q2

1 = Q2
2 = 0) and at

√
s = mf2 we found the correspondence

4παem T (0,T )(0, 0) = −af2γγ

m3
f2

2
, (11)

4παem T (2)(0, 0) = −bf2γγ 2mf2 . (12)



g∗g∗ → f2(1270) form factor(s)
f2(1270) is extended, finite size object and one can expect an
additional form factor(s) F (Q2

1 ,Q
2
2) associated with the gluon

virtualities for the g∗g∗ → f2 vertex. In our work the form
factor is parametrized as:

F (Q2
1 ,Q

2
2) =

Λ2
M

Q2
1 + Q2

2 + Λ2
M

, (13)

F (Q2
1 ,Q

2
2) =

(

Λ2
D

Q2
1 + Q2

2 + Λ2
D

)2

, (14)

F (Q2
1 ,Q

2
2) =

Λ2
1

Q2
1 + Λ2

1

Λ2
1

Q2
2 + Λ2

1

, (15)

F (Q2
1 ,Q

2
2) =

Λ4
2

(Q2
1 + Λ2

2)
2

Λ4
2

(Q2
2 + Λ2

2)
2
, (16)

where Λ is a parameter whose value is expected to be close to
the resonance mass.
No form factor in earlier work by Jeon et al.



kt-factorization approach
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Rysunek: General diagram for inclusive f2(1270) production via
gluon-gluon fusion in proton-proton collisions.



kt-factorization approach
The differential cross section for inclusive f2(1270) meson
production via the g∗g∗ → f2(1270) fusion in the
kt-factorization approach can be written as:

dσ

dyd2p
=

∫

d2
q1

πq2
1

Fg (x1,q
2
1)

∫

d2
q2

πq2
2

Fg (x2,q
2
2) δ

(2)(q1 + q2 − p)

π

(x1x2s)2
|Mg∗g∗→f2|2 . (17)

Here q1, q2 and p - the transverse momenta of the gluons and
the f2(1270) meson. The f2 meson is on-shell and p2 = m2

f2
.

Mg∗g∗→f2 is the off-shell matrix element for the hard subprocess
and Fg are the unintegrated gluon distribution functions (UGDFs).
The UGDFs depend on gluon longitudinal momentum fractions
x1,2 = mT exp(±y)/

√
s and q

2
1,q

2
2 entering the hard process. In

principle, they can depend also on factorization scales µ2
F ,i ,

i = 1, 2. We assume µ2
F ,1 = µ2

F ,2 = m2
T . Here mT is transverse

mass of the f2(1270) meson; mT =
√

p2 + m2
f2

. The δ(2) function

above can be eliminated by introducing q1 + q2 and q1 − q2



kt-factorization approach

The off-shell matrix element can be written as (we restore the
color-indices a and b)

Mab =
q
µ
1tq
ν
2t

|q1||q2|
Mab
µν =

q1+q2−

|q1||q2|
n+µn−νMab

µν =
x1x2s

2|q1||q2|
n+µn−νMab

µν (18)

with the lightcone components of gluon momenta

q1+ = x1

√

s/2, q2− = x2

√

s/2. Here the matrix-element reads

Mµν = Γ
(f2γγ)
µνκλ (q1t , q2t) (ǫ(f2)κλ(p))∗ , (19)

where ǫ(f2) is the polarisation tensor for the f2(1270) meson.



kt-factorization approach, energy-momentum

tensor

In the kt-factorization approach in Jeon et al. the matrix
element squared was written as:

|Mg∗g∗→f2
|2 =

1

4

∑

λ1,λ2,λf2

|Mg∗g∗→f2
|
2

=
1

4

1

(N2
c − 1)2

∑

a,b

q1t µ1

q1t

q2t ν1

q2t

V
α1β1µ1ν1
ab

(q1, q2) P
(2)

α1β1,α2β2
(p)

q1t µ2

q1t

q2t ν2

q2t

(

V
α2β2µ2ν2
ab

(q1, q2)
)

∗

=
1

4

1

(N2
c − 1)κ2

P
(2)

α1β1,α2β2
(p)H

α1β1
⊥

(q1t , q2t )H
α2β2
⊥

(q1t , q2t )

(

x1x2s

2q1t q2t

)2

, (20)

where λ1, λ2, λf2
are the helicities of the gluons and f2 meson, a, b are color indices, Nc is the number of colors,

V
αβµν

ab
is the gg → f2 vertex. (see Jeon et al.) and κ ≈ O(0.1 GeV) is to be fixed by experiment.

No form factor(s), no αs .



kt-factorization approach
The g∗g∗ → f2(1270) coupling entering in the matrix element
squared can be obtained from that for γ∗γ∗ → f2(1270)
coupling as:

α2
em
→ α2

s

1

4Nc(N2
c − 1)

1

(< e2
q >)2

. (21)

Here (< e2
q >)2 = 25/162 for the 1√

2

(

uū + dd̄
)

flavour
structure.
In realistic calculations the running of strong coupling
constants must be included. In our numerical calculations
presented below the renormalization scale is taken in the form:

α2
s
→ αs(max {m2

T , q
2
1})αs(max {m2

T , q
2
2}) . (22)

The Shirkov-Solovtsov prescription is used to extrapolate down
to small renormalization scales. The strong coupling constant
was not included by Jeon et al.



A simple ππ final-state rescattering model
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Rysunek: General diagram for the ππ final-state rescattering
leading to f2(1270) production in proton-proton collisions.

Both π+π− and π0π0 rescatterings may lead to the production
of the f2(1270) meson.



A simple ππ final-state rescattering model

The spectrum of pions will be not calculated here but instead
we will use a Lévy parametrization of the inclusive π0 cross
section for

√
s = 7 TeV. At the ALICE energies and

midrapidities we assume the following relation:

dσπ
+

dydpt

(y, pt) =
dσπ

−

dydpt

(y, pt) =
dσπ

0

dydpt

(y, pt) (23)

to be valid.
Our approach here is similar in spirit to color evaporation
approach considered, e.g. for J/ψ.



A simple ππ final-state rescattering model

We write the number of produced f2(1270) per event as

N =
∫

dy1dp1t

∫

dy2dp2t

∫

dφ1

2π

dφ2

2π

dNπ

dy1dp1t

dNπ

dy2dp2t

Pππ→f2 ,

(24)
where dNπ/(dydpt) is number of pions per interval of rapidity
and transverse momentum. Here we use the Tsallis
parametrization of π0 at

√
s = 7 TeV (Abelev et al.); Above

Pππ→f2 parametrizes probability of the π+π− and π0π0

formation of f2(1270) as well as probability of its survival in a
dense hadronic system. It will be treated here as a free
parameter adjusted to the f2(1270) data from the Lee thesis.
The distribution dNπ/(dydpt) is obtained then by calculating
y and pt of the f2(1270) meson and binning in these variables.
The effect of hadronic rescattering is also discussed recently by
Utheim and Sjöstrand.



Numerical Results

To convert to the number of f2(1270) mesons per event
(ALICE data) we use the following relation:

dN

dpt

=
1

σinel

dσ

dpt

. (25)

The inelastic cross section for
√

s = 7 TeV was measured at
the LHC and is:

σinel = 73.15± 1.26 (syst.) mb , (26)

σinel = 71.34± 0.36 (stat.)± 0.83 (syst.) mb , (27)

as obtained by the TOTEM (Antchev et al.) and ATLAS (Aad
et al.) collaborations, respectively. We take σinel = 72.5 mb.



Numerical Results
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5. The preliminary ALICE data from
Lee thesis. The results for the EMN (left panel) and PPV (right
panel) g∗g∗ → f2(1270) vertex for different F (Q2

1 ,Q
2
2) ff are

shown. In this calculation the JH UGDF was used.
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5 together with the preliminary ALICE
data. Shown are the results calculated in the two approaches,
EMN (left panel) and PPV (right panel) vertices, and the helicity-0
and -2 components separately and their coherent sum (total). Here
we used dipole form factor parametrization with ΛD = mf2. The
dotted line corresponds to the contribution for the



Numerical Results
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Rysunek: The f2(1270) meson transverse momentum distributions
at
√

s = 7 TeV and |y| < 0.5 together with the preliminary ALICE
data from the Lee thesis. In the left panel two different UGDFs,
JH (solid lines) and KMR (dashed lines), are shown. In the right
panels the dependence on the Gaussian smearing parameter σ0 for
GJR08VFNS(LO) GDF. Here the EMN vertex and the dipole form
factor with ΛD = mf2 were used.



Numerical Results

0 1 2 3 4 5
 (GeV)

1t
q

0

1

2

3

4

5

 (
G

eV
)

2tq

1

10

210

310

410

510

610

(1270) + X,            JH UGDF2 f→pp 

),  EMN vertex2 (nb/GeV
2t

dq
1t

/dqσ2d

0 1 2 3 4 5
 (GeV)

1t
q

0

1

2

3

4

5

 (
G

eV
)

2tq

1

10

210

310

410

510

610

(1270) + X,          JH UGDF2 f→pp 

),  PPV vertex2 (nb/GeV
2t

dq
1t

/dqσ2d

Rysunek: Two-dimensional distributions in gluon transverse
momenta for the JH UGDF and for two g∗g∗f2(1270) vertex
prescription: EMN (left panel) and PPV (right panel). Here we
used the dipole form factor with ΛD = mf2.



Numerical Results

We have checked that

d2σEMN

dq1tdq2t

(

d2σPPV

dq1tdq2t

)−1

→ 1 , for q1t → 0 and q2t → 0 ,

(28)
i.e. the two vertices are equivalent for both on-shell photons.



Numerical Results

0 2 4 6 8 10

)2 (GeV
ave
2Q

3−10

2−10

1−10

1

10)
-2

 (
G

eV
)

Λ( σ/2
(0

,0
)]

)
Λ(

)/
[T

av
e

2
/d

Q
)

Λ( σ
(d

 = 7 TeV,  |y| < 0.5s(1270) + X,  2 f→pp 

2f = mDΛJH UGDF, dipole ff, 

PPV vertex
 = 2Λ
 = 0, TΛ
 = 0, LΛ
 = 1Λ

0 2 4 6 8 10

 (GeV)
t

p

3−10

2−10

1−10

1

10)
-1

 (
G

eV
)

Λ( σ/2
(0

,0
)]

)
Λ(

)/
[T

t
/d

p
)

Λ( σ
(d

 = 7 TeV,  |y| < 0.5s(1270) + X,  2 f→pp 

2f = mDΛJH UGDF, dipole ff, 

PPV vertex
 = 2Λ
 = 0, TΛ
 = 0, LΛ
 = 1Λ

Rysunek: Normalized distributions in averaged virtuality
Q2

ave = (Q2
1 + Q2

2)/2 (left panel) and in the f2(1270) meson
transverse momentum (right panel). Results for different
Λ = 0, 1, 2 terms in the g∗g∗f2 vertex using the same form of
F (Λ)(Q2

1 ,Q
2
2) with ΛD = mf2 are shown. JH UGDF was used.



Numerical Results
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ALICE data. We show maximal allowed contribution from the ππ
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Comment on exclusive pp → ppf2(1270) process

We present the Born result (without absorptive corrections
important only when restricting to purely exclusive processes)
for the pp → ppf2(1270) process proceeding via the
pomeron-pomeron fusion mechanism calculated in the
tensor-pomeron approach.
In the calculation we take the P− P− f2(1270) coupling
parameters from Lebiedowicz-Nachtmann-Szczurek 2018.



Conclusions
◮ We have performed calculation of the gluon-gluon fusion

contribution to inclusive f2(1270) production.

◮ kt-factorization approach with the KMR and JH UGDFs
has been applied.

◮ the g∗g∗f2(1270) couplings has been obtained from the
γ∗γ∗f2(1270) couplings

◮ Both MNE and PPV set of vertices have been used.
Helecity 0 and 2 only
They are equivalent for on-shell photons (gluons).
The equivalence relation has been found.

◮ The coupling constants were found from:
the γγ → f2(1270)→ ππ reaction.

◮ Form factors are unknown. They were parametrized, and
the corresponding parameters adjusted to the
pp → f2(1270) preliminary ALICE data (Lee thesis)



Conclusions

◮ FF not included in earlier calculations of Jeon which
would be in conflict with the ALICE data.

◮ Only transverse momentum distributions for pt > 3 GeV
could be explained as due to gluon-gluon fusion.
Very difficult to explain low pt part.

◮ A toy model for ππ rescattering was discussed.
The model can explain low-pt data by adjusting one
parameter and cannot explain larger-pt data.

◮ pp → ppf2(1270) was included but its contribution is very
small.

◮ Form factors were parametrized here but should be
calculated in future with realistic qq̄ wave functions.


