Summary

Interpretation of LHCb Hidden-Charm Pentaquarks within the Compact Diquark Model

Ahmed Ali¹, Ishtiaq Ahmed², M. Jamil Aslam³, <u>Alexander Parkhomenko⁴</u>, and Abdur Rehman²

¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
 ²National Centre for Physics, Islamabad, Pakistan
 ³Quaid-i-Azam University, Islamabad, Pakistan
 ⁴P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

40th International Conference on High Energy Physics (ICHEP-2020) Prague, Czech Republic, July 28 – August 4, 2020

based on the papers PLB 793 (2019) 365 [arXiv:1904.00446] & JHEP 10 (2019) 256 [arXiv:1907.06507]

Outline

<ロ><一><一><一><一><一><一><一</td>2/59

Introduction

- In 2003, the first exotic hidden-charm state X(3872) was observed by the Belle Collaboration
- This state was confirmed by BaBar, CDF, D0, BESII, and LHCb collaborations
- Soon after, many new other mesons with masses above the DD and BB thresholds have been observed
- In 2015 LHCb Collaboration found two resonances which have got the interpretation as hidden-charm pentaquarks

Phenomenology

X, Y, Z, P_c and Charmonium States

[S. L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90 (2018) 015003]

$\Lambda_b \rightarrow p + J/\psi + K^-$ Decay: 2015 Results by LHCb

- Pentaquarks were found in three-body weak decays of Λ_b -baryons $\Lambda_b \rightarrow p + J/\psi + K^-$ [LHCb, PRL, 2015]
- In addition to non-resonant channel, there are two quasi-two-body decay modes of Λ_b-baryon:
 - $\Lambda_b \rightarrow \Lambda^{(*)} + J/\psi$ decay, where Λ -hyperon or its excitations are produced with the following decay $\Lambda^{(*)} \rightarrow p + K^-$
 - 2 $\Lambda_b \rightarrow P_c^+ + K^-$ decay, where P_c^+ -pentaquarks were found in the decay mode $P_c^+ \rightarrow p + J/\psi$
- Heavy-quark symmetry preserves the spin of light diquark; $\Lambda_b \rightarrow \Sigma_c + X$ are highly suppressed [PDG, 2018]

$\Lambda_b \rightarrow \rho + K^- + J/\psi$ Decay: 2015 Results by LHCb

- Two peaks in invariant-mass, $m_{pJ/\psi} = \sqrt{(p_P + p_{J/\psi})^2}$, distribution were interpreted as hidden-charm pentaquarks
 - $P_c^+(4380)$: spin-parity $J^P = 3/2^-$ (preferred) $M = (4380 \pm 8 \pm 29) \text{ MeV}, \ \Gamma = (205 \pm 18 \pm 86) \text{ MeV}$ • $P_c^+(4450)$: spin-parity $J^P = 5/2^+$ (preferred) $M = (4449.8 \pm 1.7 \pm 2.5) \text{ MeV}, \ \Gamma = (39 \pm 5 \pm 19) \text{ MeV}$
- Assignments (3/2⁺, 5/2⁻) and (5/2⁺, 3/2⁻) are possible

LHCb Results on $\Lambda_b \rightarrow \rho + J/\psi + \pi^-$ Decay

- Evidence of these resonances was also pointed out in the other decay $\Lambda_b \rightarrow p + J/\psi + \pi^-$ [LHCb, PRL, 2016]
- Combined significance is calculated to be 3.1σ
- Contributions from pentaquarks are shown as shaded

$\Lambda_b \rightarrow p + J/\psi + K^-$ Decay: 2019 Results by LHCb

- Λ_b-baryon decay Λ_b → p + J/ψ + K⁻ was studied on
 9 times more data based on Run 1 and 2 than on Run 1
- Three narrow peaks were observed in $m_{J/\psi p}$ distribution

State	Mass [MeV]	Width [MeV]	(95% CL)	$\mathcal{R}\left[\% ight]$
$P_{c}(4312)^{+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6\pm4.9^{+8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(< 20)	$0.53\pm0.16^{+0.15}_{-0.13}$

- $P_c(4312)$ is a new resonance
- $P_c(4450)$ splits into $P_c(4440)$ and $P_c(4457)$
- $P_c(4380)$ under question
 - Spin-parities are unknown yet

Results by D0 & ATLAS Collaborations

- D0 Collab. [V. M. Abasov *et al.*, arXiv:1910.11676]
 - Analysis is based on 10.4 fb⁻¹ of data
 - Enhancement in J/ψ p invariant mass distribution originated by decays of b-flavored hadrons
 - Consistent with a sum of $P_c(4440)^+$ and $P_c(4457)^+$
 - Significance is 3.0σ
 - No evidence of $P_c(4312)^+$ state
 - R = N(4312)/[N(4440) + N(4457)] < 0.6 at 95% C.L.

ATLAS Collab. [I. Eletskikh, ATL-PHYS-PROC-2020-007]

- Based on 4.9 fb⁻¹ at 7 TeV and 20.6 fb⁻¹ at 8 TeV
- $\Lambda_b \rightarrow J/\psi \, p \, K^-$ with large $m_{p \, K^-}$ invariant mass
- Model without pentaquarks is not excluded
- Data prefer model with two or more pentaquarks
- Masses and widths of two $P_c(4380)^+$ and $P_c(4450)^+$ pentaquarks are consistent with those from LHCb
- Data are also compatible with the three narrow LHCb
 pentaquarks

$\gamma \gamma + oldsymbol{ ho} ightarrow J/\psi + oldsymbol{ ho}$ Scattering: 2019 Results by GlueX

GlueX Collab. [A. Ali et al., PRL 123 (2019) 072001]

- Hall D of Jafferson Lab., data of 2016–2017
- Photon energy $E_{\gamma} \in [8.2 \text{ GeV}, 11.8 \text{ GeV}]$
- For $J^P = 3/2^ \mathcal{B}(P_c^+ \to J/\psi p) < 2.0\%;$
 - consistent with LHCb
- Upper limits on BF do not exclude the molecular model of *P*⁺_c but are an order of magnitude lower than predictions in hadrocharmonium model

Theoretical Interpretations of 3 Narrow Pentaquarks

Molecular Picture:

Open charm-meson and charm-baryon bound states

- Masses slightly below the $\Sigma_c^+ \overline{D}^{(*)0}$ thresholds:
 - $\Sigma_c^+ \bar{D}^0$: $E_{thr} = (4317.73 \pm 0.41) \text{ MeV}$
 - $\Sigma_c^+ \bar{D}^{*0}$: $E_{\rm thr} = (4459.9 \pm 0.9)$ MeV
- S-wave molecular-like states
- Negative parity $P = (-1)^{L+1}$
- Hadrocharmonium Picture:

Compact charmonium state inside the proton interior

- Compact Multiquark Picture:
 - Quarks and antiquarks are tightly bound into colorless state
 - Introduction of point-like diquarks and antidiquarks simplifies consideration drastically

Theoretical Interpretations of 3 Narrow Pentaquarks

Molecular Picture:

Open charm-meson and charm-baryon bound states

- Masses slightly below the $\Sigma_c^+ \overline{D}^{(*)0}$ thresholds:
 - $\Sigma_c^+ \bar{D}^0$: $E_{\text{thr}} = (4317.73 \pm 0.41) \text{ MeV}$
 - $\Sigma_c^+ \bar{D}^{*0}$: $E_{\rm thr} = (4459.9 \pm 0.9)$ MeV
- S-wave molecular-like states
- Negative parity $P = (-1)^{L+1}$
- Hadrocharmonium Picture:

Compact charmonium state inside the proton interior

Compact Multiquark Picture:

- Quarks and antiquarks are tightly bound into colorless state
- Introduction of point-like diquarks and antidiquarks simplifies consideration drastically

Theoretical Interpretations of 3 Narrow Pentaquarks

Molecular Picture:

Open charm-meson and charm-baryon bound states

- Masses slightly below the $\Sigma_c^+ \overline{D}^{(*)0}$ thresholds:
 - $\Sigma_c^+ \bar{D}^0$: $E_{\text{thr}} = (4317.73 \pm 0.41) \text{ MeV}$
 - $\Sigma_c^+ \bar{D}^{*0}$: $E_{\text{thr}} = (4459.9 \pm 0.9) \text{ MeV}$
- S-wave molecular-like states
- Negative parity $P = (-1)^{L+1}$
- Hadrocharmonium Picture:

Compact charmonium state inside the proton interior

- Compact Multiquark Picture:
 - Quarks and antiquarks are tightly bound into colorless state
 - Introduction of point-like diquarks and antidiquarks simplifies consideration drastically

Diquark Model of Hadrons

- Quarks q_i^α and diquarks Q_{iα} are building blocks of baryons and exotic hadrons
- α is the $SU(3)_C$ index and *i* is the $SU(3)_F$ index
- Color repres.: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive

■ Interpolating diquark operators for the two spin states Scalar: 0⁺ $Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_{c}^{\beta}\gamma_{5}q_{i}^{\gamma} - \bar{q}_{ic}^{\beta}\gamma_{5}c^{\gamma} \right)$ Axial-Vector: 1⁺ $\vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_{c}^{\beta}\vec{\gamma}q_{i}^{\gamma} + \bar{q}_{ic}^{\beta}\vec{\gamma}c^{\gamma} \right)$

Colorless combination with the quark results into the baryon, 🛓 🔊 🗤

Diquark Model of Hadrons

- Quarks q^α_i and diquarks Q_{iα} are building blocks of baryons and exotic hadrons
- α is the $SU(3)_C$ index and *i* is the $SU(3)_F$ index
- Color repres.: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive

■ Interpolating diquark operators for the two spin states Scalar: 0⁺ $Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_{c}^{\beta}\gamma_{5}q_{i}^{\gamma} - \bar{q}_{ic}^{\beta}\gamma_{5}c^{\gamma} \right)$ Axial-Vector: 1⁺ $\vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_{c}^{\beta}\vec{\gamma}q_{i}^{\gamma} + \bar{q}_{ic}^{\beta}\vec{\gamma}c^{\gamma} \right)$

Colorless combination with the quark results into the baryon, 🛓 🔊 ۹

Diquark Model of Hadrons

- Quarks q^α_i and diquarks Q_{iα} are building blocks of baryons and exotic hadrons
- α is the $SU(3)_C$ index and *i* is the $SU(3)_F$ index
- Color repres.: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive

- Interpolating diquark operators for the two spin states Scalar: 0^+ $Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_c^\beta \gamma_5 q_i^\gamma - \bar{q}_{ic}^\beta \gamma_5 c^\gamma \right)$ Axial-Vector: 1^+ $\vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(\bar{c}_c^\beta \vec{\gamma} q_i^\gamma + \bar{q}_{ic}^\beta \vec{\gamma} c^\gamma \right)$
 - Colorless combination with the quark results into the baryon

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

- Antiquark \bar{q}_k^{γ} and two diquarks $Q_{i\alpha}$ and $Q'_{j\beta}$ are the building blocks of pentaquarks
- At least, three approaches are suggested for hidden-charm pentaquarks in the compact diquark model
- Heavy triquark heavy diquark model within the "Dynamical Diquark Model" [R. Lebed, PLB 749 (2015) 454]
- Heavy tetraquark heavy antiquark model [A. Ali, I. Ahmed, M. J. Aslam, and A. Rehman, PRD 94 (2016) 054001]
- Doubly-heavy triquark light diquark model [A. Ali and AP, PLB 793 (2019) 365; A. Ali et al., JHEP 10 (2019) 256]
- For ground-state pentaquarks and their first orbital excitations, basic vectors of the states constructed in L – S scheme can be easily related to each other with using spin recouplings

Doubly-Heavy Triquark — Light Diquark Model

- Heavy diquark couples with *c*-antiquark in the color-triplet doubly-heavy triquark (DHT)
- Light diquark being a color antitriplet makes pentaquark colorless
- DHT is practically static
- Light diquark is "rotating" around triquark
- Light diquark is easier to excite orbitally than constituents inside the DHT

Phenomenology

State Vector of Pentaquark

 $|S_{hd}, S_t, L_t; S_{ld}, L_{ld}; S, L\rangle_J$

- Charmed antiquark spin $S_{\bar{c}} = 1/2$; implicitly assumed
- Heavy diquark spin $S_{hd} = 0, 1$
- Heavy triquark spin $S_t = 1/2, 3/2$
- Orbital angular momentum of heavy triquark *L_t*; assumed *S*-wave for triquark
- Light diquark spin $S_{ld} = 0, 1$
- Orbital angular momentum of light diquark L_{ld}
- Pentaquark spin S = 1/2, 3/2, 5/2
- Orbital angular momentum of pentaquark L
- Total angular momentum of pentaquark J

Set of Pentaquark State Vectors

Spin-parity J^P and state vectors of pentaquarks with the ground-state triquark and light diquark with $S_{ld} = 0$

		J^P	$ S_{hd}, S_t, L_t; S_{ld}, L_{ld}; S, L\rangle_J$
		1/2+	$ 0, 1/2, 0; 0, 1; 1/2, 1\rangle_{1/2}$
J^P	$ S_{hd}, S_t, L_t; S_{ld}, L_{ld}; S, L\rangle_J$	3/2+	$ 0, 1/2, 0; 0, 1; 1/2, 1\rangle_{3/2}$
1/2-	$ 0, 1/2, 0; 0, 0; 1/2, 0\rangle_{1/2}$	1/2+	$ 1, 1/2, 0; 0, 1; 1/2, 1\rangle_{1/2}$
1/2-	$ 1, 1/2, 0; 0, 0; 1/2, 0\rangle_{1/2}$	3/2+	$ 1, 1/2, 0; 0, 1; 1/2, 1\rangle_{3/2}$
3/2-	1,3/2,0;0,0;3/2,0 _{3/2}	$1/2^{+}$	$ 1, 3/2, 0; 0, 1; 3/2, 1\rangle_{1/2}$
	-/	3/2+	$ 1, 3/2, 0; 0, 1; 3/2, 1\rangle_{3/2}$
		5/2 ⁺	$ 1, 3/2, 0; 0, 1; 3/2, 1\rangle_{5/2}$

Number of state vectors with the ground-state triquark and light diquark with $S_{ld} = 1$ are larger and not presented

Hamiltonian for pentaquarks with hidden charm

 Involves constituent diquarks' and quark masses and spin-spin, spin-orbit, orbital and tensor interactions

 $H^{(L=0)} = H_t + H_{ld}$

Doubly-heavy triquark Hamiltonian

 $H_t = m_c + m_{hd} + 2\left(\mathcal{K}_{cq}\right)_{\bar{3}}\left(\mathbf{S}_c \cdot \mathbf{S}_q\right) + 2\mathcal{K}_{\bar{c}q}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_q\right) + 2\mathcal{K}_{\bar{c}c}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_c\right)$

Light diquark Hamiltonian

$$H_{ld} = m_{ld} + 2 \, (\mathcal{K}_{q'q''})_{\bar{3}} \, (\mathbf{S}_{q'} \cdot \mathbf{S}_{q''}) + H_{SS}^{t-la}$$

- Anticipate that spin-spin couplings in H^{t-/d} are strongly suppressed and neglected

Hamiltonian for pentaquarks with hidden charm

 Involves constituent diquarks' and quark masses and spin-spin, spin-orbit, orbital and tensor interactions

 $H^{(L=0)} = H_t + H_{ld}$

Doubly-heavy triquark Hamiltonian

 $H_{t} = m_{c} + m_{hd} + 2\left(\mathcal{K}_{cq}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}q}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}c}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{c}\right)$

Light diquark Hamiltonian

$$H_{ld} = m_{ld} + 2 \, (\mathcal{K}_{q'q''})_{\bar{3}} \, (\mathbf{S}_{q'} \cdot \mathbf{S}_{q''}) + H_{SS}^{t-lc}$$

■ Triquark-diquark spin-spin interactions

 $\begin{aligned} \boldsymbol{\eta}_{SS} &= 2\left(\mathcal{K}_{cq'}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q'}\right) + 2\left(\mathcal{K}_{qq'}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q'}\right) + 2\mathcal{K}_{\bar{c}q'}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q'}\right) \\ &+ 2\left(\mathcal{\tilde{K}}_{cq''}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q''}\right) + 2\left(\mathcal{\tilde{K}}_{qq''}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q''}\right) + 2\mathcal{\tilde{K}}_{\bar{c}q''}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q''}\right) \end{aligned}$

Anticipate that spin-spin couplings in H^{t-ld} are strongly suppressed and neglected

Hamiltonian for pentaquarks with hidden charm

 Involves constituent diquarks' and quark masses and spin-spin, spin-orbit, orbital and tensor interactions

 $H^{(L=0)} = H_t + H_{ld}$

Doubly-heavy triquark Hamiltonian

 $H_{t} = m_{c} + m_{hd} + 2\left(\mathcal{K}_{cq}\right)_{\bar{3}}\left(\mathbf{S}_{c} \cdot \mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}q}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}c}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{c}\right)$

Light diquark Hamiltonian

$$m{H}_{\mathit{ld}} = m_{\mathit{ld}} + 2\,(\mathcal{K}_{q'q''})_{ar{3}}\,(m{S}_{q'}\cdotm{S}_{q''}) + H^{t-\mathit{lc}}_{SS}$$

- Triquark-diquark spin-spin interactions $\begin{aligned} H_{SS}^{t-ld} &= 2\left(\tilde{\mathcal{K}}_{cq'}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q'}\right) + 2\left(\tilde{\mathcal{K}}_{qq'}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q'}\right) + 2\tilde{\mathcal{K}}_{\bar{c}q'}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q'}\right) \\ &+ 2\left(\tilde{\mathcal{K}}_{cq''}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q''}\right) + 2\left(\tilde{\mathcal{K}}_{qq''}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q''}\right) + 2\tilde{\mathcal{K}}_{\bar{c}q''}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q''}\right) \end{aligned}$
- Anticipate that spin-spin couplings in H^{t-Id} are strongly suppressed and neglected

Hamiltonian for pentaquarks with hidden charm

 Involves constituent diquarks' and quark masses and spin-spin, spin-orbit, orbital and tensor interactions

 $H^{(L=0)} = H_t + H_{ld}$

Doubly-heavy triquark Hamiltonian

 $H_{t} = m_{c} + m_{hd} + 2\left(\mathcal{K}_{cq}\right)_{\bar{3}}\left(\mathbf{S}_{c} \cdot \mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}q}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{q}\right) + 2\mathcal{K}_{\bar{c}c}\left(\mathbf{S}_{\bar{c}} \cdot \mathbf{S}_{c}\right)$

Light diquark Hamiltonian

$$H_{ld} = m_{ld} + 2 \, (\mathcal{K}_{q'q''})_{ar{3}} \, ({f S}_{q'} \cdot {f S}_{q''}) + H^{t-ld}_{SS}$$

- Triquark-diquark spin-spin interactions $\begin{aligned} H_{SS}^{t-ld} &= 2\left(\tilde{\mathcal{K}}_{cq'}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q'}\right) + 2\left(\tilde{\mathcal{K}}_{qq'}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q'}\right) + 2\tilde{\mathcal{K}}_{\bar{c}q'}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q'}\right) \\ &+ 2\left(\tilde{\mathcal{K}}_{cq''}\right)_{\bar{3}}\left(\mathbf{S}_{c}\cdot\mathbf{S}_{q''}\right) + 2\left(\tilde{\mathcal{K}}_{qq''}\right)_{\bar{3}}\left(\mathbf{S}_{q}\cdot\mathbf{S}_{q''}\right) + 2\tilde{\mathcal{K}}_{\bar{c}q''}\left(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q''}\right) \end{aligned}$
- Anticipate that spin-spin couplings in H^{t-Id}_{SS} are strongly suppressed and neglected

Hamiltonian for orbitally-excited pentaquarks

Should be extended by including orbital momentum $L = L_{ld}$

 $H = H^{(L=0)} + H_L + H_T$

Spin-orbit and orbital interactions

$$H_L = 2A_t \left(\mathbf{S}_t \cdot \mathbf{L} \right) + 2A_{ld} \left(\mathbf{S}_{ld} \cdot \mathbf{L} \right) + \frac{1}{2} B \mathbf{L}^2$$

$$H_{T} = b \frac{S_{12}}{4} = b \left[3 \frac{(\mathbf{S}_{t} \cdot \mathbf{R}) (\mathbf{S}_{ld} \cdot \mathbf{R})}{R^{2}} - (\mathbf{S}_{t} \cdot \mathbf{S}_{ld}) \right]$$

- R determines position of light diquark relative to heavy triquark
- Non-vanishing for light diquark with $S_{ld} = 1$
- Remember that orbital excitation in DHT is absent ($L_t = 0$)
- Hence, $\Delta H_L = 0$ and $\Delta H_T = 0$

Hamiltonian for orbitally-excited pentaquarks

Should be extended by including orbital momentum $L = L_{ld}$

 $H = H^{(L=0)} + H_L + H_T$

Spin-orbit and orbital interactions

$$H_{L} = 2A_{t} \left(\mathbf{S}_{t} \cdot \mathbf{L}\right) + 2A_{ld} \left(\mathbf{S}_{ld} \cdot \mathbf{L}\right) + \frac{1}{2} B \mathbf{L}^{2}$$

$$H_{T} = b \frac{S_{12}}{4} = b \left[3 \frac{(\mathbf{S}_{l} \cdot \mathbf{R}) (\mathbf{S}_{ld} \cdot \mathbf{R})}{R^{2}} - (\mathbf{S}_{l} \cdot \mathbf{S}_{ld}) \right]$$

- R determines position of light diquark relative to heavy triquark
- Non-vanishing for light diquark with $S_{ld} = 1$
- Remember that orbital excitation in DHT is absent ($L_t = 0$)
- Hence, $\Delta H_L = 0$ and $\Delta H_T = 0$

Hamiltonian for orbitally-excited pentaquarks

Should be extended by including orbital momentum $L = L_{ld}$

 $H = H^{(L=0)} + H_L + H_T$

Spin-orbit and orbital interactions

$$H_{L} = 2A_{t} \left(\mathbf{S}_{t} \cdot \mathbf{L}\right) + 2A_{ld} \left(\mathbf{S}_{ld} \cdot \mathbf{L}\right) + \frac{1}{2} \mathbf{B} \mathbf{L}^{2}$$

$$H_{T} = \boldsymbol{b} \frac{S_{12}}{4} = \boldsymbol{b} \left[3 \frac{(\mathbf{S}_{t} \cdot \mathbf{R}) (\mathbf{S}_{ld} \cdot \mathbf{R})}{R^{2}} - (\mathbf{S}_{t} \cdot \mathbf{S}_{ld}) \right]$$

- R determines position of light diquark relative to heavy triquark
- Non-vanishing for light diquark with $S_{ld} = 1$
- Remember that orbital excitation in DHT is absent ($L_t = 0$)
- Hence, $\Delta H_L = 0$ and $\Delta H_T = 0$

Hamiltonian for orbitally-excited pentaquarks

Should be extended by including orbital momentum $L = L_{ld}$

 $H = H^{(L=0)} + H_L + H_T$

Spin-orbit and orbital interactions

$$H_{L} = 2A_{t} \left(\mathbf{S}_{t} \cdot \mathbf{L}\right) + 2A_{ld} \left(\mathbf{S}_{ld} \cdot \mathbf{L}\right) + \frac{1}{2} \mathbf{B} \mathbf{L}^{2}$$

$$H_{T} = \boldsymbol{b} \frac{S_{12}}{4} = \boldsymbol{b} \left[3 \frac{(\mathbf{S}_{t} \cdot \mathbf{R}) (\mathbf{S}_{ld} \cdot \mathbf{R})}{R^{2}} - (\mathbf{S}_{t} \cdot \mathbf{S}_{ld}) \right]$$

- R determines position of light diquark relative to heavy triquark
- Non-vanishing for light diquark with $S_{ld} = 1$
- Remember that orbital excitation in DHT is absent ($L_t = 0$)
- Hence, $\Delta H_L = 0$ and $\Delta H_T = 0$

Tensor Interaction in Orbitally Excited Pentaquark

Tensor interaction operator in the term H_T

$$\frac{S_{12}}{4} = Q(\mathbf{S}_1, \mathbf{S}_2) = 3\,(\mathbf{S}_1 \cdot \mathbf{n})\,(\mathbf{S}_2 \cdot \mathbf{n}) - (\mathbf{S}_1 \cdot \mathbf{S}_2) = 3\,S_1^i\,S_2^j\,N_{ij}$$

S₁ = **S**_t and **S**₂ = **S**_{ld} are spins of triquark and light diquark

- **n** = \mathbf{R}/R is the unit vector along the vector \mathbf{R}
- The scalar operator above written as the convolution contains $N_{ij} = n_i n_j \frac{1}{3} \delta_{ij}$
- Need its transform which can be easily evaluated between states with the same fixed value L of the angular momentum operator L
- Required identity can be found in the Landau and Lifshitz book

$$\langle N_{ij} \rangle = -\frac{1}{(2L-1)(2L+3)} \left[L_i L_j + L_j L_i - \frac{2}{3} L(L+1) \delta_{ij} \right]$$
$$\langle Q(\mathbf{S}_1, \mathbf{S}_2) \rangle_{L=1} = -\frac{3}{5} \left[(\mathbf{L} \cdot \mathbf{S}_1) (\mathbf{L} \cdot \mathbf{S}_2) + (\mathbf{L} \cdot \mathbf{S}_2) (\mathbf{L} \cdot \mathbf{S}_1) - \frac{4}{3} (\mathbf{S}_1 \cdot \mathbf{S}_2) \right]$$

34/59

Mass Formulas for Ground-State Pentaquarks — 1

- From three states, two states with J^P = 1/2⁻ mix due to spin-spin interaction of charm antiquark and heavy diquark, and the third one with J^P = 3/2⁻ remains unmixed
- For the later state, the mass m_3^{S0} is the average of the effective Hamiltonian over this state:

$$m_{3}^{S0} = M_{0} + \frac{1}{2} \left(\mathcal{K}_{cq} \right)_{\bar{3}} - \frac{3}{2} \left(\mathcal{K}_{q'q''} \right)_{\bar{3}} + \frac{1}{2} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right)$$

- Superscript on mass denotes the *S*-wave pentaquark with "good" light diquark, having $S_{ld} = 0$
- Two states with $J^P = 1/2^-$, after sandwiching the effective Hamiltonian, yield the following (2 × 2) mass matrix:

$$M_{J=1/2}^{S0} = M_0 - \frac{1}{2} (\mathcal{K}_{cq})_{\bar{3}} - \frac{3}{2} (\mathcal{K}_{q'q''})_{\bar{3}} - (\mathcal{K}_{cq})_{\bar{3}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{1}{2} (\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c}) \begin{pmatrix} 0 & \sqrt{3} \\ \sqrt{3} & -2 \end{pmatrix}$$

Mass Formulas for Ground-State Pentaquarks - 2

Masses of ground-state pentaquarks with the spin-0 light diquark

$$\begin{split} m_1^{S0} &= M_0 - \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left[2 + r_{hd} + 3r_{ld} + 2\sqrt{3 + (1 - r_{hd})^2} \right] \\ m_2^{S0} &= M_0 - \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left[2 + r_{hd} + 3r_{ld} - 2\sqrt{3 + (1 - r_{hd})^2} \right] \\ m_3^{S0} &= M_0 + \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} - 3r_{ld} \right). \end{split}$$

- Universal contribution $M_0 \equiv m_{hd} + m_{ld} + m_c$
- Introduced two ratios of the spin-spin couplings

$$r_{hd} \equiv rac{2(\mathcal{K}_{cq})_{ar{3}}}{\mathcal{K}_{ar{c}q} + \mathcal{K}_{ar{c}c}}, \qquad r_{ld} \equiv rac{2(\mathcal{K}_{q'q''})_{ar{3}}}{\mathcal{K}_{ar{c}q} + \mathcal{K}_{ar{c}c}}$$

Mass Formulas for Orbitally-Excited Pentaquarks

Masses of orbitally-excited pentaquarks with spin-0 light diquark

$$\begin{split} m_1^{P0} &= M_0 - \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left[2 + r_{hd} + 3r_{ld} + 2\sqrt{3 + (1 - r_{hd})^2} \right] + B - 2A_t \\ m_2^{P0} &= m_1^{P0} + \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \sqrt{3 + (1 - r_{hd})^2} \\ m_{3,4}^{P0} &= m_{1,2}^{P0} + 3A_t \\ m_5^{P0} &= M_0 + \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} - 3r_{ld} \right) + B - 5A_t \\ m_6^{P0} &= m_5^{P0} + 3A_t, \qquad m_7^{P0} = m_5^{P0} + 8A_t \end{split}$$

- Other pentaquark masses are also obtained from matrix elements of the effective Hamilltonian after diagonalization
- For all the masses of ground-state pentaquarks and their first orbital excitations were derived analytical expressions

Obtained from phenomenological analysis of ordinary hadrons

- Charm quark mass: $m_c^b = (1710 \pm 10)$ MeV
- Diquark masses: $m_{[ud]} = (576 \pm 15) \text{ MeV}$ $m_{[cq]} = (1976 \pm 15) \text{ MeV}$
- Spin-spin couplings: $(\mathcal{K}_{cq})_{\bar{3}} = 67 \text{ MeV}, (\mathcal{K}_{qq'})_{\bar{3}} = 98 \text{ MeV}$ $\mathcal{K}_{\bar{c}q} = 70 \text{ MeV}, \mathcal{K}_{\bar{c}c} = 113 \text{ MeV}$
- Assign a 10% error of each value of spin-spin coupling; the same as in Ω^{*}_c-baryons
- Two parameters spin-orbit A_t and orbital B couplings are determined from the masses of newly observed pentaquarks

- Obtained from phenomenological analysis of ordinary hadrons
- Charm quark mass: $m_c^b = (1710 \pm 10) \text{ MeV}$
- Diquark masses: m_[ud] = (576 ± 15) MeV m_[cq] = (1976 ± 15) MeV
- Spin-spin couplings: $(\mathcal{K}_{cq})_{\bar{3}} = 67 \text{ MeV}, (\mathcal{K}_{qq'})_{\bar{3}} = 98 \text{ MeV}$ $\mathcal{K}_{\bar{c}q} = 70 \text{ MeV}, \mathcal{K}_{\bar{c}c} = 113 \text{ MeV}$
- Assign a 10% error of each value of spin-spin coupling; the same as in Ω^{*}_c-baryons
- Two parameters spin-orbit A_t and orbital B couplings are determined from the masses of newly observed pentaquarks

- Obtained from phenomenological analysis of ordinary hadrons
- Charm quark mass: $m_c^b = (1710 \pm 10) \text{ MeV}$
- Diquark masses: m_[ud] = (576 ± 15) MeV m_[cq] = (1976 ± 15) MeV
- Spin-spin couplings: $(\mathcal{K}_{cq})_{\bar{3}} = 67 \text{ MeV}, (\mathcal{K}_{qq'})_{\bar{3}} = 98 \text{ MeV}$ $\mathcal{K}_{\bar{c}q} = 70 \text{ MeV}, \mathcal{K}_{\bar{c}c} = 113 \text{ MeV}$
- Assign a 10% error of each value of spin-spin coupling; the same as in Ω^{*}_c-baryons
- Two parameters spin-orbit A_t and orbital B couplings are determined from the masses of newly observed pentaquarks

- Obtained from phenomenological analysis of ordinary hadrons
- Charm quark mass: $m_c^b = (1710 \pm 10) \text{ MeV}$
- Diquark masses: $m_{[ud]} = (576 \pm 15) \text{ MeV}$ $m_{[ca]} = (1976 \pm 15) \text{ MeV}$
- Spin-spin couplings: $(\mathcal{K}_{cq})_{\bar{3}} = 67 \text{ MeV}, (\mathcal{K}_{qq'})_{\bar{3}} = 98 \text{ MeV}$ $\mathcal{K}_{\bar{c}q} = 70 \text{ MeV}, \mathcal{K}_{\bar{c}c} = 113 \text{ MeV}$
- Assign a 10% error of each value of spin-spin coupling; the same as in Ω^{*}_c-baryons
- Two parameters spin-orbit A_t and orbital B couplings are determined from the masses of newly observed pentaquarks

- Obtained from phenomenological analysis of ordinary hadrons
- Charm quark mass: $m_c^b = (1710 \pm 10) \text{ MeV}$
- Diquark masses: m_[ud] = (576 ± 15) MeV m_[cq] = (1976 ± 15) MeV
- Spin-spin couplings: $(\mathcal{K}_{cq})_{\bar{3}} = 67 \text{ MeV}, (\mathcal{K}_{qq'})_{\bar{3}} = 98 \text{ MeV}$ $\mathcal{K}_{\bar{c}q} = 70 \text{ MeV}, \mathcal{K}_{\bar{c}c} = 113 \text{ MeV}$
- Assign a 10% error of each value of spin-spin coupling; the same as in Ω^{*}_c-baryons
- Two parameters spin-orbit A_t and orbital B couplings are determined from the masses of newly observed pentaquarks

Former $P_c(4450)$ splits into $P_c(4440)$ and $P_c(4457)$

- Both of them are *P*-wave pentaquarks: $P_c(4457)$ with $J^P = 5/2^+$ $P_c(4440)$ with $J^P = 3/2^+$
- Third pentaquark $P_c(4312)$ is S-wave state with $J^P = 3/2^{-1}$
- Keeping spin-spin couplings fixed, we performed χ^2 -fit

- The best-fit value of M_0 comes out about 72 MeV higher than the sum of the diquarks' and charm quark masses, $M_0 = 4262 \text{ MeV}$
- Value of *B* is too small in comparison with the strengths of the orbital excitations in other hadrons, and, in particular, B(Ω_c) = 325 MeV, obtained from the Ω_c^{*}-baryons

- Former $P_c(4450)$ splits into $P_c(4440)$ and $P_c(4457)$
- Both of them are *P*-wave pentaquarks: $P_c(4457)$ with $J^P = 5/2^+$ $P_c(4440)$ with $J^P = 3/2^+$
- Third pentaquark $P_c(4312)$ is S-wave state with $J^P = 3/2^{-1}$
- Keeping spin-spin couplings fixed, we performed χ^2 -fit

- The best-fit value of M_0 comes out about 72 MeV higher than the sum of the diquarks' and charm quark masses, $M_0 = 4262 \text{ MeV}$
- Value of *B* is too small in comparison with the strengths of the orbital excitations in other hadrons, and, in particular, B(Ω_c) = 325 MeV, obtained from the Ω_c^{*}-baryons

- Former $P_c(4450)$ splits into $P_c(4440)$ and $P_c(4457)$
- Both of them are *P*-wave pentaquarks: $P_c(4457)$ with $J^P = 5/2^+$ $P_c(4440)$ with $J^P = 3/2^+$
- Third pentaquark $P_c(4312)$ is S-wave state with $J^P = 3/2^-$
- Keeping spin-spin couplings fixed, we performed χ^2 -fit

- The best-fit value of M_0 comes out about 72 MeV higher than the sum of the diquarks' and charm quark masses, $M_0 = 4262 \text{ MeV}$
- Value of *B* is too small in comparison with the strengths of the orbital excitations in other hadrons, and, in particular, B(Ω_c) = 325 MeV, obtained from the Ω_c^{*}-baryons

- Former $P_c(4450)$ splits into $P_c(4440)$ and $P_c(4457)$
- Both of them are *P*-wave pentaquarks: $P_c(4457)$ with $J^P = 5/2^+$ $P_c(4440)$ with $J^P = 3/2^+$
- Third pentaquark $P_c(4312)$ is S-wave state with $J^P = 3/2^-$
- Keeping spin-spin couplings fixed, we performed χ^2 -fit

- The best-fit value of M_0 comes out about 72 MeV higher than the sum of the diquarks' and charm quark masses, $M_0 = 4262 \text{ MeV}$
- Value of *B* is too small in comparison with the strengths of the orbital excitations in other hadrons, and, in particular, *B*(Ω_c) = 325 MeV, obtained from the Ω^{*}_c-baryons

- Alternatively, strength of *B* can be determined from $P_c(4440)$ and $P_c(4457)$ masses only
- Assuming that spin-spin couplings and constituent masses are known
- $B = \frac{1}{5} \left\{ 3M[P_c(4440)^+] + 2M[P_c(4457)^+] \right\} M_0 \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} 3r_{ld} \right)$
- This gives the value of orbital coupling $B \simeq 207$ MeV; closer to estimates in the hidden and open charm hadrons
- Mass of the third pentaquark $M = (4240 \pm 29)$ MeV with $J^P = 3/2^-$ is somewhat lower than the mass of the observed $P_c(4312)$ peak, but is still in the right ball-park

- Alternatively, strength of *B* can be determined from $P_c(4440)$ and $P_c(4457)$ masses only
- Assuming that spin-spin couplings and constituent masses are known

$$B = \frac{1}{5} \left\{ 3M[P_c(4440)^+] + 2M[P_c(4457)^+] \right\} - M_0 - \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} - 3r_{ld} \right)$$

- This gives the value of orbital coupling $B \simeq 207$ MeV; closer to estimates in the hidden and open charm hadrons
- Mass of the third pentaquark $M = (4240 \pm 29)$ MeV with $J^P = 3/2^-$ is somewhat lower than the mass of the observed $P_c(4312)$ peak, but is still in the right ball-park

- Alternatively, strength of *B* can be determined from $P_c(4440)$ and $P_c(4457)$ masses only
- Assuming that spin-spin couplings and constituent masses are known
- $B = \frac{1}{5} \left\{ 3M[P_c(4440)^+] + 2M[P_c(4457)^+] \right\} M_0 \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} 3r_{ld} \right)$
 - This gives the value of orbital coupling $B \simeq 207 \text{ MeV}$; closer to estimates in the hidden and open charm hadrons
 - Mass of the third pentaquark $M = (4240 \pm 29)$ MeV with $J^P = 3/2^-$ is somewhat lower than the mass of the observed $P_c(4312)$ peak, but is still in the right ball-park

- Alternatively, strength of *B* can be determined from $P_c(4440)$ and $P_c(4457)$ masses only
- Assuming that spin-spin couplings and constituent masses are known
- $B = \frac{1}{5} \left\{ 3M[P_c(4440)^+] + 2M[P_c(4457)^+] \right\} M_0 \frac{1}{4} \left(\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} \right) \left(2 + r_{hd} 3r_{ld} \right)$
 - This gives the value of orbital coupling $B \simeq 207$ MeV; closer to estimates in the hidden and open charm hadrons
 - Mass of the third pentaquark $M = (4240 \pm 29)$ MeV with $J^P = 3/2^-$ is somewhat lower than the mass of the observed $P_c(4312)$ peak, but is still in the right ball-park

Mass Predictions for Unflavored Pentaquarks

J^P	This work	AAAR	J ^P	This work	AAAR
	$S_{ld}=0, L=0$			$S_{ld} = 1, L = 1$	
1/2-	$\textbf{3830}\pm\textbf{34}$	4086 ± 42	1/2+	4144 ± 37	3970 ± 50
	4150 ± 29	4162 ± 38		$\textbf{4209} \pm \textbf{37}$	4174 ± 44
3/2-	4240 ± 29	4133 ± 55		4465 ± 32	4198 ± 50
	$S_{ld} = 1, L =$	= 0	1	4530 ± 32	4221 ± 40
1/2-	4026 ± 31	4119 ± 42		4564 ± 33	4240 ± 50
	$\textbf{4346} \pm \textbf{25}$	4166 ± 38		$\textbf{4663} \pm \textbf{32}$	$\textbf{4319} \pm \textbf{43}$
	4436 ± 25	$\textbf{4264} \pm \textbf{41}$	3/2+	4187 ± 37	
3/2-	4026 ± 31	4072 ± 40		$\textbf{4250} \pm \textbf{37}$	
	4346 ± 25	4300 ± 40		4508 ± 32	
	4436 ± 25	4342 ± 40		4570 ± 32	
5/2-	4436 ± 25	4409 ± 40		4511 ± 33	
	$S_{ld} = 0, L = 1$		1	4566 ± 32	
$1/2^{+}$	4030 ± 39	4030 ± 62		4656 ± 32	
	4351 ± 35	4141 ± 44	5/2+	4260 ± 37	4450 ± 44
	4430 ± 35	4217 ± 40		4581 ± 32	4524 ± 41
3/2+	4040 ± 39			4601 ± 32	4678 ± 44
	4361 ± 35			$\textbf{4656} \pm \textbf{32}$	4720 ± 44
	4440 ± 35		7/2+	4672 ± 32	
$5/2^{+}$	4457 ± 35	4510 ± 57			

51/59

Isospin Violation in Λ_b -Decays

LHCb Collab. [R. Aaij *et al.*, arXiv:1912.02110]

- Data: 1.0 fb⁻¹ at 7 TeV , 2.0 fb⁻¹ at 8 TeV, and 5.5 fb⁻¹ at 13 TeV
- Decays through the $\Delta I = 0$ transition $b \rightarrow cs\bar{s}$
- Amplitide's ratio: $|A_1/A_0| < 1/20.9$ at 95% C.L.
- Rules out isospin violation at 1% rate

Mass Predictions for Unflavored Pentaquarks

J^P	This work	AAAR	JP	This work	AAAR
	$S_{ld}=0, L=0$			$S_{ld} = 1, L = 1$	
1/2-	$\textbf{3830} \pm \textbf{34}$	4086 ± 42	1/2+	4144 ± 37	3970 ± 50
	4150 ± 29	4162 ± 38		$\textbf{4209} \pm \textbf{37}$	4174 ± 44
3/2-	4240 ± 29	4133 ± 55		4465 ± 32	4198 ± 50
	$S_{ld} = 1, L =$	= 0	1	4530 ± 32	4221 ± 40
$1/2^{-}$	4026 ± 31	4119 ± 42		4564 ± 33	4240 ± 50
	$\textbf{4346} \pm \textbf{25}$	4166 ± 38		$\textbf{4663} \pm \textbf{32}$	$\textbf{4319} \pm \textbf{43}$
	4436 ± 25	4264 ± 41	3/2+	4187 ± 37	
3/2-	4026 ± 31	4072 ± 40		4250 ± 37	
	4346 ± 25	4300 ± 40		4508 ± 32	
	4436 ± 25	4342 ± 40		4570 ± 32	
5/2-	4436 ± 25	4409 ± 40		4511 ± 33	
	$S_{ld} = 0, L = 1$		1	4566 ± 32	
$1/2^{+}$	4030 ± 39	4030 ± 62		4656 ± 32	
	4351 ± 35	4141 ± 44	5/2+	4260 ± 37	4450 ± 44
	4430 ± 35	4217 ± 40		4581 ± 32	4524 ± 41
3/2+	4040 ± 39			4601 ± 32	4678 ± 44
	4361 ± 35			$\textbf{4656} \pm \textbf{32}$	$\textbf{4720} \pm \textbf{44}$
	4440 ± 35		7/2+	4672 ± 32	
$5/2^{+}$	4457 ± 35	4510 ± 57			

53/59

$\Lambda_b \rightarrow p + J/\psi + K^-$ Decay: 2019 Results by LHCb

Comments about Mass Predictions

- $M_{J/\psi p}^{\text{thr}} = M_{J/\psi} + m_p = 4035.17 \text{ MeV}$ is the threshold for observed pentaquarks and some states are below it or very close
- Other possibility is to assign $P_c(4312)$ with the state having $J^P = 3/2^+$ and M = 4361 MeV or having $J^P = 1/2^+$ and M = 4351 MeV
- Despite masses are close, input parameters have unphysical values
- Alternative assignment is given in the Dynamical Diquark Model [J. F. Giron, R. F. Lebed & C. T. Peterson, JHEP 1905 (2019) 061]
- Mass predictions for hidden-charm strange pentaquarks are also obtained

Mass Predictions for Strange Pentaquarks

- Inclusion of strange quark(s) into the content makes spectrum of hidden-charm pentaquarks very rich
- They can be classsified according to their strangeness and color connection of four quarks
 - Singly-strange: $(\bar{c}_{\bar{3}} [cs]_{\bar{3}} [qq']_{\bar{3}})$ and $(\bar{c}_{\bar{3}} [cq]_{\bar{3}} [sq']_{\bar{3}})$
 - Doubly-strange: $(\bar{c}_{\bar{3}} [cs]_{\bar{3}} [sq]_{\bar{3}})$ and $(\bar{c}_{\bar{3}} [cq]_{\bar{3}} \{ss\}_{\bar{3}})$
 - Triple-strange: $(\bar{c}_{\bar{3}} [cs]_{\bar{3}} \{ss\}_{\bar{3}})$

• Can be produced in weak decays of Ξ_b - and Ω_b -baryons at LHC

•
$$\Xi_b^- o P_{\Lambda}^0 + K^- o J/\psi + \Lambda^0 + K^-$$

• $\Xi_b^{-,0} o P_{\Sigma}^{0,+} + K^- o J/\psi + \Sigma^{0,+} + K^-$
• $\Omega_b^- o P_{\Xi_{10}}^0 + K^- o J/\psi + \Xi'^0 + K^-$
• $\Omega_b^- o P_{\Xi_{10}}^0 + \phi o J/\psi + \Omega^- + \phi$

 Ω_b-decays gives a new avenue to study pentaquarks with "bad" light diquarks

Masses of Singly-Strange $(\bar{c}_3 [cq]_3 [sq']_3)$ Pentaquarks

J^P	This work	AAAR	J ^P	This work	AAAR
	$S_{ld} = 0, L = 0$			$S_{ld} = 1, L = 1$	
1/2-	4112 ± 32	4094 ± 44	1/2+	$\textbf{4348} \pm \textbf{36}$	3929 ± 53
	4433 ± 26	4132 ± 43		4414 ± 36	$\textbf{4183} \pm \textbf{45}$
3/2-	4523 ± 26	4172 ± 47		$\textbf{4669} \pm \textbf{32}$	$\textbf{4159} \pm \textbf{53}$
	$S_{ld} = 1, L =$	= 0	1	4735 ± 32	$\textbf{4189} \pm \textbf{44}$
1/2-	$\textbf{4230} \pm \textbf{30}$	$\textbf{4128} \pm \textbf{44}$		4768 ± 32	4201 ± 53
	4551 ± 25	4134 ± 42		4867 ± 32	4275 ± 45
	4641 ± 25	$\textbf{4220} \pm \textbf{43}$	3/2+	$\textbf{4392} \pm \textbf{36}$	
3/2-	$\textbf{4230} \pm \textbf{30}$	4031 ± 43		4454 ± 36	
	4551 ± 25	$\textbf{4262} \pm \textbf{43}$		4713 ± 32	
	4641 ± 25	4303 ± 43		4775 ± 32	
5/2-	4641 ± 25	4370 ± 43		4716 ± 32	
	$S_{ld} = 0, L = 1$		1	4770 ± 32	
$1/2^{+}$	4312 ± 37	4069 ± 56		4861 ± 32	
	$\textbf{4633} \pm \textbf{33}$	4149 ± 45	5/2+	4465 ± 36	4409 ± 47
	4713 ± 33	4187 ± 44		4786 ± 32	4486 ± 45
3/2+	$\textbf{4323} \pm \textbf{37}$			4806 ± 32	4639 ± 47
	$\textbf{4643} \pm \textbf{33}$			$\textbf{4860} \pm \textbf{32}$	4681 ± 47
	4723 ± 33		7/2+	4877 ± 32	
5/2+	4740 ± 33	4549 ± 51			

∞) Q (∿ 57/59

Masses of Triple-Strange ($\bar{c}_{\bar{3}}$ [cs]₃ {ss}₃) Pentaquarks

J^P	Mass	J ^P	Mass	
S _{ld} =	= 1, <i>L</i> = 0	$S_{ld} = 1, L = 1$		
$1/2^{-}$	4642 ± 31	3/2+	4804 ± 37	
	4974 ± 25		4866 ± 37	
	5043 ± 25		5136 ± 32	
$3/2^{-}$	4642 ± 31		5198 ± 32	
	4974 ± 25		5118 ± 32	
	5043 ± 25		5173 ± 32	
$5/2^{-}$	5043 ± 25		5263 ± 32	
S _{ld} =	= 1, <i>L</i> = 1	5/2+	4877 ± 37	
$1/2^{+}$	4761 ± 37		5209 ± 32	
-	$\textbf{4826} \pm \textbf{37}$		5208 ± 32	
	5092 ± 32		5263 ± 32	
	5158 ± 32	7/2+	5279 ± 32	
	5171 ± 32			
	5270 ± 32			

All of them are decaying strongly

Summary

- Effective Hamiltonian based on the doubly-heavy triquark light diquark picture of pentaquark is worked out for ground states and orbital excitations
- All the masses are obtained analytically under assumption that spin-spin couplings between constituents of triquark and light diquark can be neglected
- Newly observed three narrow resonances are interpreted as follows: $P_c(4312)$ is *S*-wave state with $J^P = 3/2^-$ while $P_c(4440)$ and $P_c(4457)$ are *P*-wave states with $J^P = 3/2^+$ and $J^P = 5/2^+$, respectively
- Complete spectrum of hidden-charm unflavored pentaquarks is presented; spectrum of strange pentaquarks is calculated and partially presented
- We wait for spin-parity analysis by LHCb
- $\blacksquare \quad \mathcal{B}(\Lambda_b \to P_c^+ \pi^-) / \mathcal{B}(\Lambda_b \to P_c^+ K^-) \sim \tan^2 \theta_c$

Important to confirm this ratio for all three P_c -states