Excited charm meson spectroscopy from B decays at LHCb

Raúl Iraq Rabadán Trejo on behalf of the LHCb collaboration Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

ICHEP 2020 Prague, July 2020

Outline

- Overview of the D_J spectroscopy.
- The experimental study of the D_J mass spectrum.
- Selected LHCb results.
 - Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$. Phys. Rev. D94 (2016) 072001
 - Amplitude analysis of $B^- \rightarrow D^{*+}\pi^-\pi^-$. Phys. Rev. D 101 (2020) 032005

2

Charm meson spectroscopy

• Powerful test of quark-model predictions in the Standard Model.

Experimental status of the D_J spectroscopy.

- Two of the **1P orbital excitations** well established: D₁(2420) and D*₂(2460). The other two members of the 1P multiplet being the broad D*₀(2300) and D₁(2430).
- Several new states (in blue) recently discovered in the $D\pi$ and $D^*\pi$ mass spectrum.

- States with J^P = 0⁺, 1⁻, 2⁺, 3⁻,... defined as having Natural Parity.
- States with J^P = 0⁻, 1⁺, 2⁻, 3⁺, ... defined as having UnNatural Parity.

 $D^*_{3}(2750)$: $J^P = 3^-$ determined from the **amplitude analysis** of $B^- \rightarrow D^+ \pi^- \pi^-$ (Phys. Rev. D94 (2016) 072001) by LHCb. $D_0(2550)$ angular distribution consistent with $J^P = 0^-$. No definite assignment for the other resonances.

Experimental study of the D_I mass spectrum

Two different approaches for the searches of excited charm mesons:

- 1. Inclusive reactions, $pp \rightarrow D_I X$.
 - Large statistics.
 - Poor signal two background ratio.
 - No spin analysis for two body decays.
 - Only distinguishes between natural and unnatural spin-parity.

2. Amplitude analysis of multibody B decays.

- Limited data samples.
- Background usually low and well understood.
- Full spin-parity analysis.
- Presence of multiple interfering contributions.

Amplitude Analysis

Powerful technique to study complex decay dynamics. Fits of the amplitude as a function of phase space variables.

- Three body decays $D \rightarrow ABC$: two kinematic variables M_{AB}^2 , M_{BC}^2 (Dalitz plot).
- Add angular variables if initial/final states are not scalars.

- Model-dependent fits typically isobar approach: sum of resonant/non-resonant components.
- More complicated models based on **unitarity**.
- (Quasi) model-independent approaches: some partial waves described as complex bins (splines).

Line shape parameters and spin can be extracted.

Selected results

Amplitude analysis of $B^- o D^+ \pi^- \pi^-$

Phys. Rev. D94 (2016) 072001

- Study excited states in the $D^+\pi^-$ channel.
- Access to natural spin-parity states.
- Integrated luminosity: 3 fb⁻¹, Run 1 (7,8 TeV).
- Use of neural network to separate signal from different categories of background (29k events).

Excited charm meson spectroscopy from B decays at LHCb

Parameters

The dalitz plot

Phys. Rev. D94 (2016) 072001

Two indistinguishable pions; $m^2(D^+\pi^-)$ ordered by value: $m_{min}^2(D^+\pi^-)$, $m_{max}^2(D^+\pi^-)$.

Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$

Nominal model

- Four resonances.
- Two virtual resonances.

Resonance

Quasi-model-independent (QMI) description of the S-wave.

Spin

$D_3(2700)^0$ $D_2^*(3000)^0$	2	RBW	
$D_v^*(2007)^0$	1	RBW	$m = 2006.98 \pm 0.15$ MeV, $\Gamma = 2.1$ MeV
${B}_v^{*0}$	1	RBW	$m = 5325.2 \pm 0.4$ MeV, $\Gamma = 0.0$ MeV
Total S wave	0	MIPW	

Model

MIPW = Model independent partial wave (spline)

RBW = Relativistic Breit-Wigner.

8

Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ Phys. Rev. D94 (2016) 072001 Observations of the $D_3^*(2760)$ and $D_2^*(3000)$. $m(D_2^*(2460)^0) = 2463.7 \pm 0.4 \pm 0.4 \pm 0.6$ MeV, $\Gamma(D_2^*(2460)^0) = 47.0 \pm 0.8 \pm 0.9 \pm 0.3$ MeV, $m(D_1^*(2680)^0) = 2681.1 \pm 5.6 \pm 4.9 \pm 13.1$ MeV, $\Gamma(D_1^*(2680)^0) = 186.7 \pm 8.5 \pm 8.6 \pm 8.2 \text{ MeV},$ $m(D_3^*(2760)^0) = 2775.5 \pm 4.5 \pm 4.5 \pm 4.7$ MeV, $\Gamma(D_3^*(2760)^0) = 95.3 \pm 9.6 \pm 7.9 \pm 33.1 \text{ MeV},$ $m(D_2^*(3000)^0) = 3214 \pm 29 \pm 33 \pm 36$ MeV, $\Gamma(D_2^*(3000)^0) = 186 \pm 38 \pm 34 \pm 63$ MeV,

- Uncertainties are statistical, exp. systematic and model syst.
- Complete results of the amplitude fit in the back-ups.

Amplitude analysis of $B^- \rightarrow D^{*+} \pi^- \pi^-$ Phys. Rev. D 101 (2020) 032005

LHCb

- Both natural and unnatural spin-parity states.
- **4.7 fb**⁻¹: Run 1 (7, 8 TeV) and 2016 (13 TeV).
- 80k events, 90 % purity.

Candidates/(2.5 MeV)

4000

2000

Amplitude analysis of $B^- o D^{*+} \pi^- \pi^-$

Phys. Rev. D 101 (2020) 032005

Different models to fit the data:

- Breit-Wigner only model.
- Quasi-Model-Independent (QMI) approach to describe the 1^+S and 0^- amplitudes.
- Mixing between the $J^P = 1^+$ amplitudes.

QMI amplitude for the broad $J^{P} = 1^{+}$.

- $D^{*+}\pi^-$ mass spectrum divided into 31 non-uniform bins.
- Breit-Wigner term replaced with 31 complex parameters (magnitude and phase) free to float.
- All other amplitudes described by relativistic BW.

29/07/20

Amplitude analysis of $B^- o D^{*+} \pi^- \pi^-$

Phys. Rev. D (2020) 101, 032005

QMI amplitude for the $J^{P} = 0^{-}$.

- QMI $J^P = 1^+$ S fixed.
- Rest of the amplitudes described by relativistic Breit-Wigner.

Process continues by fixing the J^P = 0⁻ QMI amplitude and leaving free the rest of the BW parameters.

Amplitude analysis of $B^- \rightarrow D^{*+} \pi^- \pi^-$ Phys. Rev. D 101 (2020) 032005

Results from the nominal model

- QMI for the $J^P = 0^-$ and 1^+ S-wave.
- Resonance parameters and quantum numbers are determined.
- Breit-Wigner model to extract the $D_0(2550)$ and $D_1(2430)$ mass parameters.
- Complete results of the amplitude fit in the back-ups.

Resonance	J^P	Mass [MeV]	Width [MeV]	Significance (σ)
$D_1(2420)$	1+	$2424.8 \pm 0.1 \pm 0.7$	$33.6 \pm 0.3 \pm 2.7$	
$D_1(2430)$	1+	$2411 \pm 3 \pm 9$	$309 \pm 9 \pm 28$	
$D_2^*(2460)$	2^+	2460.56 ± 0.35	47.5 ± 1.1	
$D_0(2550)$	0-	$2518 \pm 2 \pm 7$	$199 \pm 5 \pm 17$	53
$D_1^*(2600)$	1-	$2641.9 \pm 1.8 \pm 4.5$	$149 \pm 4 \pm 20$	60
$D_2(2740)$	2^{-}	$2751 \pm 3 \pm 7$	$102 \pm 6 \pm 26$	16
$D_3^*(2750)$	3-	$2753 \pm 4 \pm 6$	$66 \pm 10 \pm 14$	8.7
D_1	$ 1^+$	$2423.7 \pm 0.1 \pm 0.8$	$31.5 \pm 0.1 \pm 2.1$	
D'_1	$ 1^+$	$2452 \pm 4 \pm 15$	$444 \pm 11 \pm 36$	

Uncertainties are statistical and exp. systematic.

Excited charm meson spectroscopy from B decays at LHCb

Amplitude analysis of $B^- o D^{*+} \pi^- \pi^-$

Phys. Rev. D 101 (2020) 032005

29/07/20

Results from the mixing model

• Mixing of 1⁺ states.

$$A^{D'_{1}} = A^{1S} \cos \omega - A^{1D} \sin \omega e^{-i\psi}$$
$$A^{D_{1}} = A^{1S} \cos \omega - A^{1D} \sin \omega e^{-i\psi}$$
$$\omega = -0.063 \pm 0.019 \pm 0.004$$
$$\psi = -0.29 \pm 0.09 \pm 0.07$$

Resonance	J^P	Mass [MeV]	Width [MeV]	Significance (σ)
$D_1(2420)$	1^{+}	$2424.8 \pm 0.1 \pm 0.7$	$33.6 \pm 0.3 \pm 2.7$	
$D_1(2430)$	1^{+}	$2411 \pm 3 \pm 9$	$309 \pm 9 \pm 28$	
$D_2^*(2460)$	2^{+}	2460.56 ± 0.35	47.5 ± 1.1	
$D_0(2550)$	0^{-}	$2518 \pm 2 \pm 7$	$199 \pm 5 \pm 17$	53
$D_1^*(2600)$	1-	$2641.9 \pm 1.8 \pm 4.5$	$149 \pm 4 \pm 20$	60
$D_2(2740)$	2^{-}	$2751 \pm 3 \pm 7$	$102 \pm 6 \pm 26$	16
$D^{*}(9750)$	9–)	$2752 \pm 4 \pm 6$	$66 \pm 10 \pm 14$	0.7
$\overline{D_1}$	1+	$2423.7 \pm 0.1 \pm 0.8$	$31.5 \pm 0.1 \pm 2.1$	\
D_1'	1^{+}	$2452 \pm 4 \pm 15$	$444 \pm 11 \pm 36$	

Charm-strange meson spectroscopy

Reminder of D_{sJ} spectroscopy from LHCb in 2014.

• Amplitude analysis of $B_s^0 \to \overline{D}{}^0 K^- \pi^+$ decays, 3 fb⁻¹ Run 1.

Phys. Rev. Lett. 113 (2014) 162001 Phys. Rev. D90 (2014) 072003

• $D_{SI}^*(2860)^-$ state resolved as an **admixture of spin-1 and spin-3 components**.

 $m(D_{s1}^{*}(2860)^{-}) = 2859 \pm 12 \pm 6 \pm 23 \text{ MeV/c}^{2}$ $\Gamma(D_{s1}^{*}(2860)^{-}) = 159 \pm 23 \pm 27 \pm 72 \text{ MeV/c}^{2}$ $m(D_{s3}^{*}(2860)^{-}) = 2860.5 \pm 2.6 \pm 2.5 \pm 6.0 \text{ MeV/c}^{2}$ $\Gamma(D_{s3}^{*}(2860)^{-}) = 53 \pm 7 \pm 4 \pm 6 \text{ MeV/c}^{2}$

Uncertainties are statistical, experimental systematics and model systematics

Charm-strange meson spectroscopy

- New discovered states (in blue) in the DK and D*K mass spectrum.
- Work in progress on the D_s meson spectroscopy from amplitude analysis of B and B_s decays at LHCb.

Summary

- The resonance parameters and quantum numbers for several recently discovered D_j states have been determined from
 - Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$.
 - Amplitude analysis of $B^- \to D^{*+} \pi^- \pi^-$.
- Mixing between $D_1(2420)$ and $D_1(2430)$ studied.
 - Mixing parameters have been measured.

• More ongoing analysis on charm and charm-strange spectroscopy from B decays at LHCb.

BACKUP SLIDES

The LHCb detector

- Single arm forward spectrometer $(2 < \eta < 5)$.
- Optimized for studies of beauty and charm decays at LHCb.
- High precision tracking.
 - Silicon strip vertex detector.
 - 4 Tm dipole magnet
 - Silicon strip + straw drift tubes downstream the magnet.
- Particle Identification
 - RICH, electromagnetic and hadronic calorimeters, muon stations.
- Efficient trigger, including **fully hadronic modes**.

	Isobar model	coefficients			
Contribution	Fit fraction (%)	Real part	Imaginary part	Magnitude	Phase (rad)
$D_2^*(2460)^0$	35.7 ± 0.6	1.00	0.00	1.00	0.00
$D_1^*(2680)^0$	8.3 ± 0.6	-0.38 ± 0.02	0.30 ± 0.02	0.48 ± 0.02	2.47 ± 0.09
$D_3^*(2760)^0$	1.0 ± 0.1	0.17 ± 0.01	0.00 ± 0.01	0.17 ± 0.01	0.01 ± 0.20
$D_2^*(3000)^0$	0.23 ± 0.07	0.05 ± 0.02	-0.06 ± 0.02	0.08 ± 0.01	-0.84 ± 0.28
$D_v^*(2007)^0$	10.8 ± 0.7	0.51 ± 0.03	-0.20 ± 0.05	0.55 ± 0.02	-0.38 ± 0.19
B_{v}^{*0}	2.7 ± 1.0	0.27 ± 0.03	0.04 ± 0.04	0.27 ± 0.05	0.14 ± 0.38
Total S wave	57.0 ± 0.8	1.21 ± 0.02	-0.35 ± 0.04	1.26 ± 0.01	-0.28 ± 0.05
Total fit fraction	115.7				

TABLE V. Complex coefficients and fit fractions determined from the Dalitz plot fit. Uncertainties are statistical only.

Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ Phys. Rev. D94 (2016) 072001

TABLE XI. Results for the product branching fractions $\mathcal{B}(B^- \to R\pi^-) \times \mathcal{B}(R \to D^+\pi^-)$. The four quoted errors are statistical, experimental systematic, model and inclusive branching fraction uncertainties.

Resonance	Branching fraction (10^{-4})
$D_2^*(2460)^0$	$3.62 \pm 0.06 \pm 0.14 \pm 0.09 \pm 0.25$
$D_1^*(2680)^0$	$0.84 \pm 0.06 \pm 0.07 \pm 0.18 \pm 0.06$
$D_3^*(2760)^0$	$0.10\pm 0.01\pm 0.01\pm 0.02\pm 0.01$
$D_2^*(3000)^0$	$0.02\pm 0.01\pm 0.01\pm 0.01\pm 0.00$
$D_v^*(2007)^0$	$1.09 \pm 0.07 \pm 0.07 \pm 0.24 \pm 0.07$
B_v^*	$0.27 \pm 0.10 \pm 0.14 \pm 0.16 \pm 0.02$
Total S wave	$5.78 \pm 0.08 \pm 0.06 \pm 0.09 \pm 0.39$

Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ Phys. Rev. D94 (2016) 072001

TABLE IX. Results for the $D^+\pi^-$ S-wave amplitude at the spline knots. The three quoted errors are statistical, experimental systematic and model uncertainties.

Knot mass	$D^+\pi^-$ S wave amplitude			
(GeV)	Real part	Imaginary part		
2.01	$-0.11 \pm 0.05 \pm 0.07 \pm 0.09$	$-0.04 \pm 0.03 \pm 0.05 \pm 0.11$		
2.10	$0.00\pm 0.05\pm 0.11\pm 0.05$	$-0.58 \pm 0.02 \pm 0.03 \pm 0.03$		
2.20	$0.39 \pm 0.05 \pm 0.08 \pm 0.05$	$-0.62 \pm 0.04 \pm 0.07 \pm 0.04$		
2.30	$0.62 \pm 0.02 \pm 0.03 \pm 0.01$	$-0.28 \pm 0.05 \pm 0.10 \pm 0.03$		
2.40	0.50	0.00		
2.50	$0.23 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.00 \pm 0.02 \pm 0.04 \pm 0.01$		
2.60	$0.21 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.10 \pm 0.02 \pm 0.03 \pm 0.00$		
2.70	$0.14 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.05 \pm 0.01 \pm 0.02 \pm 0.02$		
2.80	$0.14 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.10 \pm 0.01 \pm 0.02 \pm 0.04$		
2.90	$0.13 \pm 0.01 \pm 0.02 \pm 0.01$	$-0.16 \pm 0.01 \pm 0.02 \pm 0.02$		
3.10	$0.05 \pm 0.01 \pm 0.02 \pm 0.02$	$-0.12\pm0.01\pm0.01\pm0.01$		
4.10	$0.04 \pm 0.01 \pm 0.01 \pm 0.01$	$0.07 \pm 0.01 \pm 0.01 \pm 0.01$		
5.14	0.00	0.00		
	Magnitude	Phase		
2.01	$0.12\pm 0.05\pm 0.07\pm 0.06$	$-2.82 \pm 0.22 \pm 0.28 \pm 1.47$		
2.10	$0.58 \pm 0.02 \pm 0.03 \pm 0.03$	$-1.56 \pm 0.09 \pm 0.17 \pm 0.08$		
2.20	$0.73 \pm 0.01 \pm 0.03 \pm 0.02$	$-1.00 \pm 0.08 \pm 0.15 \pm 0.08$		
2.30	$0.68 \pm 0.01 \pm 0.03 \pm 0.01$	$-0.42\pm0.08\pm0.14\pm0.05$		
2.40	0.50	0.00		
2.50	$0.23 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.00 \pm 0.06 \pm 0.07 \pm 0.05$		
2.60	$0.23 \pm 0.01 \pm 0.01 \pm 0.03$	$-0.42 \pm 0.09 \pm 0.13 \pm 0.24$		
2.70	$0.15\pm 0.01\pm 0.01\pm 0.01$	$-0.31 \pm 0.07 \pm 0.11 \pm 0.15$		
2.80	$0.17\pm 0.01\pm 0.01\pm 0.01$	$-0.63 \pm 0.08 \pm 0.10 \pm 0.19$		
2.90	$0.20 \pm 0.01 \pm 0.01 \pm 0.01$	$-0.87 \pm 0.09 \pm 0.12 \pm 0.10$		
3.10	$0.14 \pm 0.00 \pm 0.01 \pm 0.01$	$-1.16 \pm 0.10 \pm 0.13 \pm 0.13$		
4.10	$0.08 \pm 0.00 \pm 0.01 \pm 0.01$	$1.02 \pm 0.12 \pm 0.20 \pm 0.16$		
5.14	0.00	0.00		

Amplitude analysis of $B^- o D^{*+} \pi^- \pi^-$

Phys. Rev. D 101 (2020) 032005

Results from the nominal model

• QMI for the $J^{P} = 0^{-}$ and 1^{+} S-wave.

Resonance	J^P	fraction $(\%)$	phase (rad)
$D_1(2420)$	1^+D	$59.8 \pm 0.3 \pm 2.9$	0
1^+S QMI	1^+S	$28.3 \pm 0.3 \pm 1.9$	$-1.19 \pm 0.01 \pm 0.15$
$D_2^*(2460)$	2^{+}	$15.3 \pm 0.2 \pm 0.3$	$-0.71 \pm 0.01 \pm 0.48$
$D_1(2420)$	1^+S	$2.8 \pm 0.2 \pm 0.5$	$1.43 \pm 0.02 \pm 0.31$
$0^- \mathrm{QMI}$	0^{-}	$10.6 \pm 0.2 \pm 0.7$	$1.94~\pm~0.01~\pm~0.19$
$D_1^*(2600)$	1-	$6.0 \pm 0.1 \pm 0.6$	$1.20~{\pm}~0.02~{\pm}~0.05$
$D_2(2740)$	2^-P	$1.9 \pm 0.1 \pm 0.4$	$-1.57 \pm 0.04 \pm 0.15$
$D_2(2740)$	2^-F	$3.2 \pm 0.2 \pm 1.1$	$1.11 \pm 0.04 \ \pm 0.29$
$D_3^*(2750)$	3-	$0.35 \pm 0.04 \pm 0.05$	$-1.17 \pm 0.07 \ \pm 0.31$
Sum		$128.2 \pm 0.6 \pm 3.8$	

Amplitude analysis of $B^- o D^{*+} \pi^- \pi^-$

Phys. Rev. D 101 (2020) 032005

Results from the mixing model.

Resonance	J^P	fraction $(\%)$	phase (rad)
$\overline{D_1}$	1+	$58.9 \pm 0.7 \pm 2.5$	0
D'_1	1^{+}	$21.9 \pm 2.2 \pm 3.0$	$-1.06 \pm 0.10 \pm 0.05$
$D_2^*(2460)$	2^{+}	$14.0\ \pm 0.2\ \pm 0.3$	$2.66 \pm 0.09 \pm 0.15$
$0^- QMI$	0-	$6.5 \pm 0.2 \pm 1.5$	$2.03 \pm 0.09 \pm 0.28$
$D_1^*(2600)$	1-	$4.9 \ \pm 0.1 \ \pm 0.5$	$-2.24 \pm 0.09 \pm 0.11$
$D_2(2740)$	2^-P	$0.72 \pm 0.08 \pm 0.30$	$-2.59 \pm 0.10 \pm 0.53$
$D_2(2740)$	2^-F	$2.9\ \pm 0.2\ \pm 1.1$	$0.27 \pm 0.09 \pm 0.47$
$D_3^*(2750)$	3-	$0.70 \pm 0.05 \pm 0.10$	$1.54 \pm 0.10 \pm 0.33$
Sum		$110.4 \pm 2.3 \pm 4.4$	

Amplitude analysis of $B^- \rightarrow D^{*+} \pi^- \pi^-$ Phys. Rev. D 101 (2020) 032005

Summary of the measurements of the branching fractions.

Resonance	J^P	$\mathcal{B}(B^- \to R^0 \pi^-) \times \mathcal{B}(R^0 \to D^{*+} \pi^-) \times 10^{-4}$			
		This analysis	Belle collaboration		
$D_1(2420)$	1+	$8.42 \pm 0.08 \pm 0.40 \pm 1.40$			
$D_1(2430)$	1^+S	$3.51 \pm 0.06 \pm 0.23 \pm 0.57$			
$D_2^*(2460)$	2^{+}	$2.08 \pm 0.03 \pm 0.14 \pm 0.34$	$1.8 \pm 0.3 \pm 0.3 \pm 0.2$		
$D_0(2550)$	0-	$0.72 \pm 0.01 \pm 0.07 \pm 0.12$			
$D_1^*(2600)$	1-	$0.68 \pm 0.01 \pm 0.07 \pm 0.11$			
$D_2(2740)$	2^{-}	$0.33 \pm 0.02 \pm 0.14 \pm 0.05$			
$D_3^*(2750)$	3-	$0.11 \pm 0.01 \pm 0.02 \pm 0.02$			
$\overline{D_1}$	1+	$7.95 \pm 0.09 \pm 0.34 \pm 1.30$	$6.8 \pm 0.7 \pm 1.3 \pm 0.3$		
D'_1	1^+	$2.96 \pm 0.30 \pm 0.41 \pm 0.48$	$5.0 \pm 0.4 \pm 1.0 \pm 0.4$		

Amplitude analysis of $B^- \rightarrow D^{*+} \pi^- \pi^-$ Phys. Rev. D 101 (2020) 032005

Comparison of the resonant parameters with previous measurements.

Resonance	J^P	Decays	Mass [MeV]	Width [MeV]	References
$D_0(2550)^0$	0-	$D^{*+}\pi^-$	$2518 \pm 2 \pm 7$	$199 \pm 5 \pm 17$	This work
$D_J(2550)^0$		$D^{*+}\pi^-$	$2539.4 \pm 4.5 \pm 6.8$	$130 \pm 12 \pm 13$	BaBar [11]
$D_J(2580)^0$		$D^{*+}\pi^-$	$2579.5 \pm 3.4 \pm 3.5$	$177.5 \pm 17.8 \pm 46.0$	LHCb $[12]$
$D_1^*(2600)^0$	1-	$D^{*+}\pi^-$	$2641.9 \pm 1.8 \pm 4.5$	$149 \pm 4 \pm 20$	This work
$D_J^*(2600)^0$		$D^+\pi^-$	$2608.7 \pm 2.4 \pm 2.5$	$93\pm 6 \pm 13$	BaBar [11]
$D_J^*(2650)^0$		$D^{*+}\pi^-$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	LHCb $[12]$
$D_1^*(2680)^0$		$D^+\pi^-$	$2681.1 \pm 5.6 \pm 4.9$	$186.7 \pm 8.5 \pm 8.6$	LHCb $[14]$
$D_2(2740)^0$	2^{-}	$D^{*+}\pi^-$	$2751 \pm 3 \pm 7$	$102 \pm 6 \pm 26$	This work
$D_J(2750)^0$		$D^{*+}\pi^-$	$2752.4 \pm 1.7 \pm 2.7$	$71 \pm 6 \pm 11$	BaBar [11]
$D_J(2740)^0$		$D^{*+}\pi^-$	$2737.0 \pm \ 3.5 \ \pm \ 11.2$	$73.2 \pm 13.4 \pm 25.0$	LHCb $[12]$
$D_3^*(2750)^0$	3-	$D^{*+}\pi^-$	$2753 \pm 4 \pm 6$	$66 \pm 10 \pm 14$	This work
$D_J^*(2760)^0$		$D^{*+}\pi^-$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	LHCb $[12]$
		$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	LHCb $[12]$
		$D^+\pi^-$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	BaBar [11]
$D_J^*(2760)^+$		$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm \ 6.6 \ \pm 10.5$	LHCb $[12]$
$D_3^*(2760)^+$	3-	$D^0\pi^-$	$2798 \pm 7 \pm 1$	$105 \pm 18 \pm 6$	LHCb $[13]$
$D_3^*(2760)^0$	3-	$D^+\pi^-$	$2775.5 \pm 4.5 \pm 4.5$	$95.3 \pm 9.6 \pm 7.9$	LHCb $[14]$