Providing the computing and data to the physicists

Overview of the ATLAS distributed computing system

M. Svatoš on behalf of the ATLAS Collaboration

ICHEP 2020, 28.7.2020-6.8.2020

Introduction

The ATLAS Experiment

- located at the Large Hadron Collider (LHC) at CERN near Geneva
- the detector is cylindric, 44m long, 25m in diameter, weighting 7,000 tonnes
- the collaboration comprises about 3000 scientific authors from 183 institutions, 25m/c
 representing 38 countries

Introduction

The ATLAS Distributed Computing (ADC)

- manages resources on more than 150 sites located around the world
 - about half an exabyte of detector and simulation data
 - more than 400 thousand CPU cores
- runs 24 hours/day, 365 days/year
- sites:
- **T0**, i.e. CERN the largest computing resource; detector data archived on tape
- T1 largest computing centres; second copy of the detector data on tape
- T2 computing centres usually (not always) smaller than T1 sites; no tape
- T3 small sites (sometimes, only for local users)

Introduction

ADC components

- Workflow management
 - ProdSys
 - * organizes the workflow of tasks (i.e. group of jobs) and requests (i.e. group of tasks)
 - PanDA/JEDI
 - * deals with job submission to heterogeneous resources
- Data management
 - Rucio
 - * data storage, access, replication, deletion, . . .
 - * scientific data management standard in the HEP community
- additional components
 - information system (AGIS/CRIC), monitoring and analytics, ...

Current status

The ATLAS Distributed Computing (ADC) uses various CPU resources to run jobs:

- Worldwide LHC Computing Grid (WLCG) sites,
- Cloud resources,
 - including opportunistic usage of $\sim 90 k$ cores of High Level Trigger farm (so-called P1 farm)
- HPCs,
- Volunteer computing (BOINC), etc.

Current status

Storage

- about half of available space is on tape, half on disk
- majority of data on disk are analysis formats
- disks are always full
 - most of data are primary copies (they need to stay) with only limited amount of secondary data (cached data, can be deleted if necessary)
 - older versions of analysis formats are removed as well as unused data

Run 3 /HL-LHC outlook

- with improving performance of the LHC, more data is expected to come
 - an order of magnitude increase of volumes of data due to increasing event sizes and rates
 - but the computing budget is assumed to stay flat and performance gains from technology advancements are decreasing

- Run 3 would be manageable without changes, further Runs would exceed available resources
- significant amount of R&D is needed to fit the constraints

Run 3 /HL-LHC outlook

The R&D involves, for example:

- new analysis model
- improvements in software, both internal (simulation, digitization, reconstruction) and external (event generators)
- improvements in tape usage (data carousel)
- unification of access to compute
- containerization
- interactive analysis
- . . .

Analysis model

Current analysis model

- there is a centralized data reduction system using the output of the reconstruction (AODs)
 - the DAOD (i.e. Derived AODs) content is created from AODs by slimming, thinning, skimming, or adding new variables or objects
 - analysis teams can define formats tailored for their specific analysis
- there is a significant overlap in the output formats produced by the various analysis groups
 - causing heavy disk footprint

data formats on disk

	current ~	percentage 🕶
— DAOD	101.6 PB	45%
— AOD	66.3 PB	29%
- HITS	16.1 PB	7%
— user	13.09 PB	6%
— EVNT	8.58 PB	4%
— log	3.97 PB	2%
- RAW	3.55 PB	2%
■ NTUP	2.822 PB	1%
— DRAW	2.676 PB	1%
- group	2.435 PB	1%

Analysis model

A new analysis model is being prepared in order to fix issues of the current analysis model:

- two new common unskimmed data formats and will be introduced:
 - DAOD_PHYS (about 50kB/event)
- DAOD_PHYSLITE (about 10 kB/event)
- the goal is to cover needs of up to 80% of ATLAS analyses
- with smaller size, ATLAS can keep more copies, i.e. availability of data for analysers will improve
- event data model:
 - flat representation should allow for better integration with the growing Python-based analysis ecosystem
- appropriate application of lossy compression can help save space

Software

Event generation

- it is expected that NLO and NNLO level of precision will be needed
- event generators are not product of the collaboration, i.e. there is a limited influence on development and optimizations
- there are few ways to decrease resource usage:
 - by a careful optimisation of the physics choices
 - by biasing the event generation (as a function of a kinematic quantity of interest)
 - by computing uncertainties from scales and PDFs through a re-weighting technique
 - by sharing of samples with other LHC experiments (mainly relevant for ATLAS and CMS)

The Data Processing Chain

Publication

Software

Simulation (modelling interaction particles with the detector)

- there are many R&D projects in ATLAS and GEANT4 ded- 200K icated to resource usage reduction
- there are few ways to decrease resource usage:
 - fraction of events simulated with FullSim (based on GEANT4) need to decrease
 - fraction of fast simulation (primarily parametrized calorimeter response) needs to increase
- this year
 - FullSim used majority of simulation resources
 - majority of events were simulated by fast simulation

Software

Digitization (modelling the output of the detector readout)

- the plan is to use pre-mixed pile-up datasets
- hard-scatter events will be digitized and then "overlaid" on top of a pre-mixed pile-up event
 - considerably faster
 - reduced I/O requirements
 - scales much less steeply with pile-up luminosity
 - but the pre-mixed pile-up event need to stay on the disk

Reconstruction (creating high-level objects)

 ATLAS initiated the ACTS (A Common Tracking Software) open source project to develop the next generation tracking software in a common cross experiment project

Publication

Improvements in compute

From user point of view, jobs can be split into two categories

- production
 - run by central team
 - contains chain starting at raw data from the experiment (or product of event generation) to common format used for analysis
- analysis
 - jobs from individual analysers or analysis groups

Grand-unification

- user analysis takes only fraction of CPU resources but dominates in number of files it reads
- currently, there is ongoing campaign (grand-unification) to unify access to site's compute through one queue instead of having separate queues for production and analysis
 - it makes it easier to tune amount of analysis in the system (putting more analysis where more relevant input is located)

Improvements in compute

Containerization

- almost all jobs are running inside of generic (singularity) container
- the containerization can be also used for users (user specific containers) and data preservation

Interactive analysis

Jupyter Notebooks (connected to horizontally scalable compute clusters such as Spark, Dask or Ray or batch systems) seem promising

Data Carousel

- is a sliding window approach to orchestrate data processing with the majority of data resident on tape storage
- The processing is executed by staging the data onto disk storage and promptly processing them
 - only the minimum required input data are located on disk at any time
 - tested on full Run2 RAW data reprocessing (18 PB staged over several weeks rather than all at once)

Summary and Conclusions

- The upcoming Run 3/HL-LHC brings many challenges for the ATLAS Distributed Computing.
- The current model is not sustainable for the HL-LHC.
- Many improvements are need for ADC to be able to make LHC data available to ATLAS
 physicists and to provide them with means to analyse them, such as:
 - new analysis model introducing new small data formats
 - internal and external software improvements
 - improvements in compute access for analysers
 - improvements in disk/tape usage