ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE VIRTUAL ON HIGH ENERGY PHYSICS

CONFERENCE

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

LICE data processing for Run 3 and Run 4 at the LHC

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS,

28 JULY - 6 AUGUST 2020, PRAGUE, CZECH REPUBLIC, VIRTUAL CONFERENCE

CHIARA ZAMPOLLI(*) for the ALICE COLLABORATION

Outline – ALICE in Run 3 and Run 4

- → ALICE upgrade
- → ALICE data processing
- → Synchronous processing
- → TPC space-charge distortions
- → Central barrel tracking
- \rightarrow O² processing model
- → Analysis framework
- → Summary and conclusions

See also:

S. Panebianco, 28th July at 19:20, session 12 M. Concas, 30th July at 8:20, this session M. Lettrich, 30th July at 9:20, this session

Dedicated heavy-ion experiment

- Barrel tracking detectors with geometrical acceptance $|\eta| < 0.9$ and full ϕ
- Precision tracking capabilities in |η| < 0.9 down to very low momenta (<100 MeV/c, low B-field)
- Different particle-identification detectors, some with limited geometrical acceptance
- Excellent hadron identification from low to high momenta
- Tracking detectors optimized for extremely high charged track multiplicities

Dedicated heavy-ion experiment

- Barrel tracking detectors with geometrical acceptance $|\eta| < 0.9$ and full ϕ
- Precision tracking capabilities in |η| < 0.9 down to very low momenta (<100 MeV/c, low B-field)
- Different particle-identification detectors, some with limited geometrical acceptance
- Excellent hadron identification from low to high momenta
- Tracking detectors optimized for extremely high charged track multiplicities

Run 2:

- Pb-Pb Interaction Rate (IR) ~7-10 kHz, trigger rate < 1 kHz limited by **TPC** readout (<3.5 kHz) and bandwidth
- Collected luminosity (*L*): ~1 nb⁻¹

Run 3 + Run 4:

- Pb-Pb IR = **50 kHz** (but also pp!), **continuous** readout
- Goal: *L* ~10 nb⁻¹ (B = 0.5 T) + 3 nb⁻¹ (B = 0.2 T)

Upgraded detectors: ITS, TPC, MFT, FIT

See <u>S. Panebianco</u>

Run 3 + Run 4:

- Pb-Pb IR = **50 kHz** (but also pp!), **continuous** readout
- Goal: *L* ~10 nb⁻¹ (B = 0.5 T) + 3 nb⁻¹ (B = 0.2 T)

TPC: from MPWC to GFM

Intense R&D studies for detector optimization

- GEM stacks with 4 layers
- Highly optimized HV configuration

- Pb-Pb IR = **50 kHz** (but also pp!), **continuous** ٠
- Goal: *L*~10 nb⁻¹ (B = 0.5 T) + 3 nb⁻¹ (B = 0.2 T) ٠

MPWC: triggered readout

GEM: continuous readout

Run 3 + Run 4:

- Pb-Pb IR = 50 kHz (but also pp!), continuous
- Goal: *L* ~10 nb⁻¹ (B = 0.5 T) + 3 nb⁻¹ (B = 0.2 T)

Upgraded detectors: ITS, TPC, MFT, FIT

Upgraded data processing: O²(Online-Offline processing)

C. ZAMPOLLI FOR ALICE

ALICE data processing in Run 3 + 4

~ 3.5 TB/s ~0.6 TB/s Detector . Detector **FLP** . Detector FLP

> First Level Processors

Data arrive at the First Level Processing nodes (FLP) from the detectors' readout links.

First data compression (zero suppression) is performed inside FPGA-based readout cards (Common Readout Unit).

The continuous data are divided into Sub-Time Frames (TFs) on each FLP, 1 TF = 10-20 ms long (128-256 orbits) packets.

ALICE data processing in Run 3 + 4

Sub-Time Frames are merged together into complete TFs on the EPNs.

Synchronous reconstruction, calibration, data compression is performed.

Size of the farm (FLPs with CPUs + EPNs with CPUs and GPUs) such to cope with the peak rate of 50 kHz Pb-Pb data taking.

Compressed Time Frames are written to a 60 PB disk buffer, enough to keep the foreseen 1 month long Pb-Pb data sample.

Total compression factor from detectors to disk: **35** (N.B.: cannot be compared to Run 2 due to different raw data format).

ALICE data processing in Run 3 + 4

At **asynchronous** stage, a second (and possibly third) reconstruction with final calibration will be run on the O² EPN farm and the T0/T1s (1/3 each).

Final Analysis Object Data (AOD) will be produced and saved on permanent storage.

CTFs will be deleted from the disk buffer to make space for new data

Synchronous processing

Goal of synchronous reconstruction is to reach factor 35 of compression.

Most relevant detector is TPC: from 3.4 TB/s to 70 GB/s

TPC data compression will consist of:

- Zero suppression
- Clusterization
- Optimized data format
- Entropy reduction
- TPC tracking, to remove clusters not associated to tracks
- Remaining clusters entropy-compressed with ANS encoding

Unassigned clusters (straight lines correspond to noisy pads) Removed clusters Reconstructed tracks Failed fit

See <u>M. Lettrich</u>

Synchronous processing

Goal of synchronous reconstruction is to reach factor 35 of compression.

Most relevant detector is TPC: from 3.4 TB/s to 70 GB/s

TPC data compression will consist of:

Clusterization

USE OF GPUs MANDATORY

> 40x faster than CPU but only 4x more expensive

• TPC tracking

See M. Concas

Plan to exploit GPUs computing power also during asynchronous reconstruction

30 July 2020

C. ZAMPOLLI FOR ALICE

Synchronous processing

USE OF GPUs MANDATORY

> 40x faster than CPU but only 4x more expensive

Plan to exploit GPUs computing power also during asynchronous reconstruction

C. ZAMPOLLI FOR ALICE

Space-Charge Distortions in the TPC

TPC GEM configuration designed to reduce to the minimum the ion backflow (< 1%)
 Still, positive charge accumulating and moving in the TPC → modified E-field → distortions in the TPC

- **overlap** of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined *z* coordinate, but **just a time** (*t*)
- presence of **distortion** corrections that are position dependent

- **overlap** of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined *z* coordinate, but **just a time** (*t*)
- presence of **distortion** corrections that are position dependent

- Standalone ITS tracking
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary
 → good enough at this stage (sync!)
- Track following to find missing clusters

- **overlap** of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined *z* coordinate, but **just a time** (*t*)
- presence of **distortion** corrections that are position dependent

- Standalone ITS tracking
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary
 → good enough at this stage (sync!)
- Track following to find missing clusters
- Refine *z* = 0 estimate, refit track with best precision
- Find ITS-TPC track compatibility using times

- **overlap** of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined *z* coordinate, but **just a time** (*t*)
- presence of **distortion** corrections that are position dependent

- Standalone ITS tracking
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary
 → good enough at this stage (sync!)
- Track following to find missing clusters
- Refine *z* = 0 estimate, refit track with best precision
- Find ITS-TPC track compatibility using times
- Match TPC track to ITS track, fixing *z*-position and *t* of the TPC track
- Refit ITS + TPC track outwards and inwards
- Prolong into TRD / TOF

More on TPC Space-Charge Distortions

O² processing model

ALICE Run 3 + 4 processing software (reconstruction) / framework used at all stages: synchronous phase, asynchronous phase, simulation...

"Translator" of the user's computational problem in a low-level topology of devices exchanging messages Declarative.

Reactive-like design (push data, don't pull). Integration with the rest of the production system.

ALICE-specific description of the messages

Header (extensible) + payload. Computer language agnostic. Extensible. Suitable for GPU. Multiple data formats and serialization methods: custom data structure GPU oriented; ROOT; Apache Arrow.

FairMQ message passing architecture Standalone general processes (devices). Shared memory backend.

O² processing model

ALICE Run 3 + 4 processing software (reconstruction) / framework used at all stages: synchronous phase, asynchronous phase, simulation...

O² processing model

ALICE Run 3 + 4 processing software (reconstruction) / framework used at all stages: synchronous phase, asynchronous phase, simulation... **analysis**

Data model for analysis based on **flat tables** arranged in a relationaldatabase-like manner:

- minimise I/O cost
- improve vectorisation / parallelism

Apache Arrow hidden behind a classic C++ API Analysis core expressed in the form of a **task**

- legacy from Run 1 + 2
- filters and selections
- merging, concatenation of tables

ROOT serialized output

Data model for analysis based on **flat tables** arranged in a relationaldatabase-like manner:

- minimise I/O cost
- improve vectorisation / parallelism

Apache Arrow hidden behind a classic C++ API Analysis core expressed in the form of a **task**

- legacy from Run 1 + 2
- filters and selections
- merging, concatenation of tables

ROOT serialized output

O² Analysis model is **DECLARATIVE**: the user will specify inputs and outputs

Data model for analysis based on **flat tables** arranged in a relationaldatabase-like manner:

- minimise I/O cost
- improve vectorisation
 / parallelism

Apache Arrow hidden behind a classic C++ API Analysis core expressed in the form of a **task**

- legacy from Run 1 + 2
- filters and selections
- merging, concatenation of tables

ROOT serialized output

O² Analysis model is **DECLARATIVE**: the user will specify inputs and outputs **IMPERATIVE**: the user will specify the processing algorithm

Analysis and computing model

100x more collisions to analyze with respect to Run 1 + 2, ~x30 increase in AOD total size.

AOD stored only (size) in a **flat** data structure (performance).

Analysis oriented **skimmed** (event and track selection, information reduction) ntuples for further optimization.

10% of the reconstructed and simulated data copied to the O² Analysis Facility for fast turnaround cycles and analysis validations \rightarrow not exclusively distributed analysis model.

Full samples analyzed on the Grid.

Organized analysis to minimize data access.

Summary and conclusions

ALICE is undergoing a **major upgrade** in view of the upcoming Run 3 + 4.

 Detectors, processing, computing (aka O²), and analysis framework

The **synchronous stage** will allow to achieve a factor of 35 in data reduction

 Relying on full TPC reconstruction, and partial/full reconstruction of the other detectors (also for calibration)

The O² processing framework will have its foundations on three main layers, for data transport, data model, and data processing

 They will ensure a consistent and homogeneous model for processing over all stages and activities – synchronous/asynchronous reconstruction, simulation, quality control, calibration

Backup

ITS: from Si pixel, drift, strip detectors to MAPS (CMOS Monolithic Active Pixel Sensors)

		115
	Rate	1 kHz
	Thickness	~1.14% X ₀
Run 3 + Run 4:	Pixel size	425 (xy) μm x 50 μm (z)
 Pb-Pb IR = 50 kHz (but also pp!), continuous Goal: <i>L</i>~10 nb⁻¹ (B = 0.5 T) + 3 nb⁻¹ (B = 0.2 T) 	n. layers	6 (only 2 with pixels)

ITS2 100 kHz 0.3% X₀, 0.8% X₀ 29 μm (xy) x 27 μm (z) 7

Synchronous processing

Goal of synchronous reconstruction is to reach factor 35 of compression.

Most relevant detector is TPC: from 3.4 TB/s to 70 GB/s

TPC data compression will consist of:

Clusterization

USE OF GPUs MANDATORY

- Optimized data format
- Entropy reduction
- **TPC tracking**, to remove clusters not associated to tracks

Plan to exploit GPUs computing power also during asynchronous reconstruction