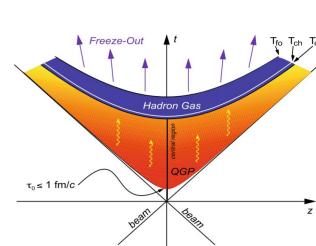


A generalized approach to study low as well as high pT regime of transverse momentum spectra

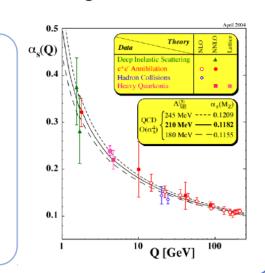
R. Gupta*, S. Jena


Department of Physical Sciences, IISER Mohali, India
Presented at: International Conference on High Energy Physics-2020, Prague, Czech Republic

Motivation

Studying the QCD matter produced under extreme condition of temperature and density called Quark Gluon Plasma (QGP) is among the important goal of heavy-ion collision experiments. QGP state is being created for a very short interval of time ($\sim 10^{-22}$ s) so we cannot directly probe this state. Hence we utilize kinematic data of final state particles produced in heavy-ion collision in order to study the dynamics of QGP. Transverse momentum (p_{τ}) spectra is one such kinematic variable

that gives us information about the thermodynamical as well as hydrodynamical properties of the system produced in heavy-ion collision. We have developed a unified formalism to study full range of p_{τ} -spectra including both soft as well as hard part using a single distribution function.



Quantum Chromo Dynamics (QCD)

QCD is the field theoretical framework which governs the strong interaction between quarks and gluons.

Theoretical models for p_T spectra

- Due to the asymptotic freedom and very nature of QCD coupling constant, it is difficult to apply perturbative QCD at low energy because of high coupling strength.
- To overcome this issue, we resort to phenomenological models with most common being the statiatical approach to explain low-p_T part of the spectra whereas we have a well defined perturbative QCD based power-law form of distribution function for high-p_T region corresponding to particles produced in hard processes.

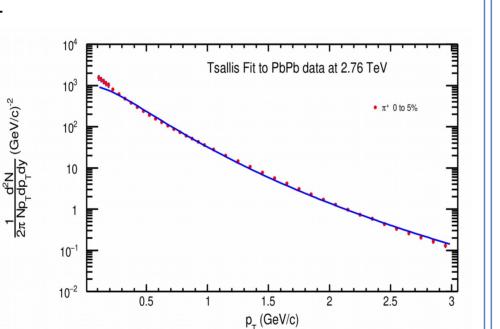
Boltzmann Distribution

- Considering the particles produced in heavy-ion collision to be of thermal origin. Most natural choice to explain energy spectra is Boltzmann distribution.
- For Boltzmann distribution, $p_{_{\rm T}}$ spectra is given as

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} = \frac{gV m_T}{(2\pi)^3} exp\left(-\frac{m_T}{T}\right)$$

- Graph represent a Boltzmann fit to most central π^+ particles
- produced in Pb-Pb collision at 2.76 TeV.
- Graph represent that the Boltzmann distribution is not a good
 explanation of p_T data.
- Boltzmann Fit to PbPb data π* at 2.76 TeV

 10²
 10²
 10⁻²
 10⁻³
 0.5
 1 1.5 2 2.5 3


 P_T (GeV/c)

Tsallis Distribution

- Tsallis statistics [2] is a generalised Boltzmann-Gibbs statistics which also takes into account nonextensivity in the system.
- Non-extensivity can arise in strongly coupled system.

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} = \frac{gV m_T}{(2\pi)^3} \left[1 + (q-1) \frac{m_T}{T} \right]^{-\frac{q}{q-1}}$$

- Non-extensivity parameter "q" takes care of deviation from thermal equilibrium.
- Tsallis distribution deviates from data at high p_T region corresponding to hard scattering.

Pearson Distribution

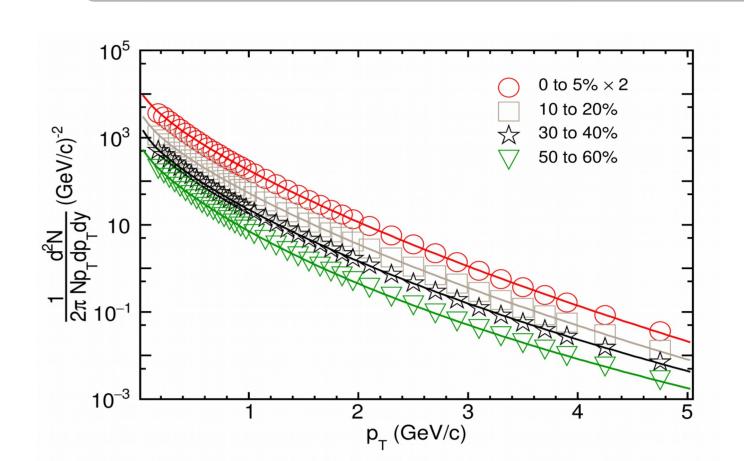
• Hard scattering part of $p_{\scriptscriptstyle T}$ spectra is governed by power law form:

$$f(p_T) = \frac{1}{N} \frac{dN}{dp_T} = Ap_T \left(1 + \frac{p_T}{p_0} \right)^{-n}$$

- Pearson distribution [3] is a generalised form of many probability distribution functions like gaussian, exponential, gamma distributions etc.
- It is given in form of differential equation:

$$\frac{1}{p(x)}\frac{dp(x)}{dx} + \frac{a+x}{b_0 + b_1x + b_2x^2} = 0$$

- Parameters a, b_0 , b_1 , b_2 are related to first four moments of a distribution.
- Different condition on parameters a, b₀, b₁, b₂ or more generally different types of root of quadratic equation in the denominator will give different distribution functions.
- Solution of this differential equation will be of the form


$$p(x) = C(e+x)^f (g+x)^h$$

• We have modified this form of Pearson distribution by substituting physics parameters to give transverse momentum spectra [1]

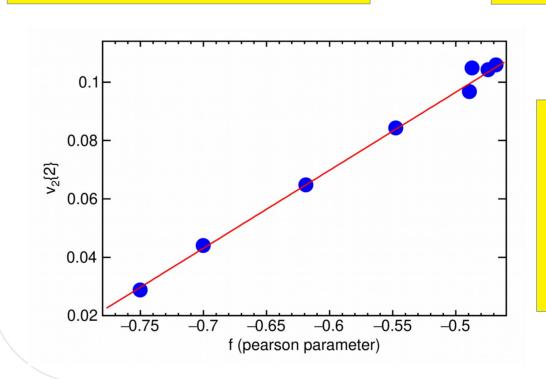
$$\frac{1}{2\pi p_T}\frac{d^2N}{dp_Tdy} = B\left(1+\frac{p_T}{p_0}\right)^{-n}\left(1+(q-1)\frac{p_T}{T}\right)^{-\frac{q}{q-1}}$$
 Hard-processes Soft-processes

• Here parameter values are such that the "soft" part decay very quickly and hence giving way for dominance of "hard" part after certain $p_{\scriptscriptstyle T}$ value.

Results

Pearson Fit to p_T -spectra of charged hadrons produced in 2.76 TeV Pb-Pb collision [4] at four different centrality.

Flow Analysis


 Flow corresponds to the azimuthal anisotropy in distribution of particle produced in heavy ion collision.

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{p_{T}}\frac{d^{2}N}{dp_{T}dy}\frac{N}{2\pi}\left[1 + 2\sum_{n}v_{n}cos\left\{n(\phi - \psi)\right\}\right]$$

• Here, v_n is the nth order flow coefficient.

Initial geometry fluctuation

Final particle momentum anisotropies

We observed a linear relationship between one of the pearson fit parameter with elliptic flow coefficient v_2 {2} obtained from Ref [5].

Summary

- Tsallis distribudion deviates from data as we move towards higher p T region.
- We developed a generalized approach to study both low as well as high-p T regions of the
- We also observe that there is a linear relationship between one of the fitted parameters and elliptic flow coefficient.

Acknowledgement

We would like to acknowledge the financial support provided by CSIR through fellowship number 09/947 (0067) 2015-EMR-1.

References

- S. Jena and R. Gupta, Phys. Lett. B807, 135551 (2020)doi:10.1016/j.physletb.2020.135551
- C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479–487, https://doi.org/10.1007/BF01016429
- K. Pearson, X. Contributions to the mathematical theory of evolution.—ii. Skew variation in homogeneous material, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 186 (1895) 343–414
- B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 720, 52 (2013) doi:10.1016/j.physletb.2013.01.051
- K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 105, 252302 (2010) doi:10.1103/PhysRevLett.105.252302

rohitgupta@iisermohali.ac.in