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Studying the QCD matter produced under extreme condition of temperature and density called Quark Gluon Plasma (QGP) is among the important goal of heavy-
ion collision experiments. QGP state is being created for a very short interval of time (~10% s) so we cannot directly probe this state. Hence we utilize kinematic
data of final state particles produced in heavy-ion collision in order to study the dynamics of QGP. Transverse momentum (p_) spectra is one such kinematic variabl

that gives us information about the thermodynamical as well as hydrodynamical properties of the system produced in heavy-ion collision. We have developed a
unified formalism to study full range of p_-spectra including both soft as well as hard part using a single distribution function.
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Quantum Chromo Dynamics (QCD)
QCD is the field theoretical framework which governs the strong interaction between quarks and gluons.
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Theoretical models for p spectra WO T () 0to5% x2
* Due to the asymptotic freedom and very nature of QCD coupling constant, it is M L”ﬁff\‘"‘if?«'ﬁfﬁf“ J 10 to 20% ]
difficult to apply perturbative QCD at low energy because of high coupling strength. - o {M_” | ¥ 103 30 to 40%
* To overcome this issue, we resort to phenomenological models with most common T § 50 to 60%
being the statiatical approach to explain low-p_ part of the spectra whereas we have 02 8
a well defined perturbative QCD based power-law form of distribution function for 5 3 10
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Boltzmann Distribution
* Considering the particles produced in heavy-ion collision to be of thermal origin. Most natural choice to explain 107
energy spectra is Boltzmann distribution.
 For Boltzmann distribution, p_ spectra is given as 10" g
| BN v @ . Boltzmann Fitto PEPb data . . sz Pearson Fit to p_-spectra of charged hadrons produced in 2.76 TeV Pb-Pb
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* Graph represent a Boltzmann fit to most central TT* particles _‘zj B :
* produced in Pb-Pb collision at 2.76 TeV. E ey F I ow Ana IyS IS
* Graph represent that the Boltzmann distribution is not a good p . o T
« explanation of p_ data. - ! : (‘é’ewc) 4 o !
* Flow corresponds to the azimuthal anisotropy in distribution of particle produced in heavy ion
> J collision.
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* Tsallis statistics [2] is a generalised Boltzmann- p PT ApTaY n
Gibbs statistics which also takes into account non-
extensivity in the system. L B I i B T TR - Here, v_is the nth order flow coefficient.
* Non-extensivity can arise in strongly coupled Tsallis Fit to PbPb data at 2.76 TeV :
system. . Y E
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* Non-extensivity parameter “q” takes care of iy i il
deviation from thermal equilibrium. : : :
- Tsallis distribution deviates from data at high p, 10 SR e B o vt \éve observed af“ﬂear relatlor;ghlp
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region corresponding to hard scattering. i = i etween One_ Orl e Pearson I
- parameter with elliptic flow
), ) s coefficient v {2} obtained from Ref
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Pearson Distribution oopl
f (pearson parameter)
 Hard scattering part of p, spectra is governed by power law form: \_
P
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* Pearson distribution [3] is a generalised form of many probability distribution functions like * Tsallis distribudion deviates from data as we move towards higher p T region.
gaussian, exponential, gamma distributions etc.
* Itis given in form of differential equation: * We developed a generalized approach to study both low as well as high-p T regions of the
1 dp(aj) a-+x spectra.
; =0
p(:U) dx bo + brx + baw * We also observe that there is a linear relationship between one of the fitted parameters and
: ] elliptic flow coefficient.
- Parameters a, b, b,, b, are related to first four moments of a distribution.
- Different condition on parameters a, b, b,, b, or more generally different types of root of
guadratic equation in the denominator will give different distribution functions. .
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* Solution of this differential equation will be of the form AcC kn oW | ed g ement
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* We have maodified this form of Pearson distribution by substituting physics parameters to 2015-EMR-1.
give transverse momentum spectra [1] _
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