

Production of D[±] mesons in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV at the STAR experiment

Jan Vanek for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

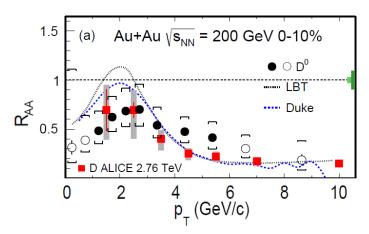
ICHEP 2020

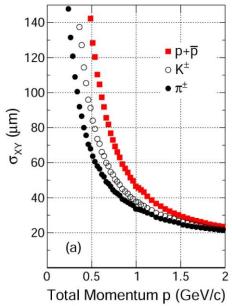
30.07.2020

PHYSICS MOTIVATION

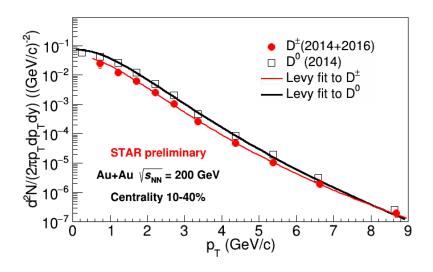
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stages of Au+Au collisions, making them an excellent probe of the QGP
- Suppression of high-p_T D⁰ is observed in central Au+Au collisions and is comparable to models incorporating both radiative and collisional energy losses, and collective flow

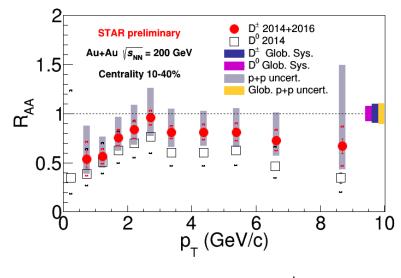
$$R_{\rm AA}(p_{\rm T}) = \frac{\mathrm{d}N_{\rm D}^{\rm AA}/\mathrm{d}p_{\rm T}}{\langle N_{\rm coll}\rangle \,\mathrm{d}N_{\rm D}^{\rm pp}/\mathrm{d}p_{\rm T}}$$


- The Heavy Flavor Tracker allows direct topological reconstruction of three body decay $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ at mid-rapidity
 - BR = $(8.98 \pm 0.28)\%$, $c\tau = (311.8 \pm 2.1) \mu m$
- The study of D[±] production is complementary to that of D⁰ and also provides constraints on the total charm cross-section in heavy-ion collisions


D⁰ (STAR): Phys. Rev. C 99, 034908, (2019). D (ALICE): JHEP 03, 081, (2016).

LBT (S. Cao et al.): Phys. Rev. C 94, 014909, (2016). Duke (Y. Xu et al.): Phys. Rev. C 97, 014907, (2018).


HFT resolution (STAR): : Phys. Rev. Lett. 118, 212301, (2017)





D[±] MEASUREMENT RESULTS

- Invariant spectrum of D[±] measured in three centrality classes of Au+Au collisions
 - For all centralities, see my poster (ID: 414)
- Nuclear modification factor: Similar level of suppression and centrality dependence for D[±] and D⁰
- The D[±]/D⁰ yield ratio shows good agreement with PYTHIA 8 calculation

p+p reference (STAR): Phys. Rev. D 86, 072013, (2012) D⁰ (STAR): Phys. Rev. C 99, 034908, (2019).

CONCLUSION

- STAR has extensively studied production of open-charm mesons in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV utilizing the HFT
- The HFT allows direct topological reconstruction of hadronic decays of open-charm mesons
- D[±] invariant spectrum measured for three centrality classes of Au+Au collisions
 - 0-10%, 10-40%, 40-80%
- D[±] nuclear modification factor is consistent with that of D⁰
 - D^0 and D^{\pm} mesons are significantly suppressed at high- $p_{\rm T}$ in central Au+Au collisions
 - Charm quarks interact strongly with the QGP
- D[±]/D⁰ yield ratio
 - Agrees with PYTHIA 8 calculation

Acknowledgement: This research is funded by the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic and from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778

Jan Vanek, ICHEP 2020 30. 07. 2020