Proton number fluctuations due to mundane effects UNIVERSITY

Boris Tomášik^{a,b}, Ivan Melo^c

^a Univerzita Mateja Bela, Banská Bystrica, Slovakia

^b Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

^c Žilinská univerzita, Žilina, Slovakia

boris.tomasik@umb.sk

Support: CAAS CZ.02.1.01/0.0/0.0/16 019/0000778, VEGA 1/0348/18, GAČR 17-04505S

Presented results are published in B. Tomášik, I. Melo, L. Lafférs, M. Bleicher, PoS CORFU2018 (2019) 155

1. Motivation: net-proton number fluctuations	2. Features of this model: Monte Carlo simulation	3. Rapidity distribution of wounded nucleons
 baryon number susceptibilities \(\chi_i\) can be calculated on the lattice enhancement of susceptibilities near the critical point susceptibilities are (in principle) measurable as cumulants of baryon number distribution Problems with the measurement: susceptibilities are calculated in grand-canonical ensemble, however cumulants are measured in real collisions which conserve B baryon number involved in the collision fluctuates due to centrality fluctuations baryon number is not measurable, net-proton number is used as proxy (e.g. since no neutrons are measured) 	 conservation of the baryon number based on the number of particiapants (wounded nucleons), which fluctuates e-by-e rapidity distribution of wounded vs. produced (anti)baryons wounded nucleons (may) remember their isospin only protons and neutrons (and their antiparticles) in the simulations Two sorts of nucleons (and antinucleons) in the final state: originally wounded nucleons produced as nucleon-antinucleon pairs Glauber Monte Carlo we use GLISSANDO 2 [1] centrality is determined based on deposited energy measure 	$\frac{dN_w}{dy}(y) = \frac{N_w}{2\sqrt{2\pi\sigma_y^2}} \left\{ \exp\left(-\frac{(y-y_m)^2}{2\sigma_y^2}\right) + \exp\left(-\frac{(y+y_m)^2}{2\sigma_y^2}\right) \right\}$ • $\sigma_y = 0.8$ • y_m set to reproduce $N_{p-\bar{p}} = \frac{Z}{A} \int_{-y_b}^{y_b} \frac{dN_w}{dy} dy$ • $y_b = 0.25$ • data on net-proton number taken from [2,3] $y_m = 1, \sigma_y = 0.8$
4. Rapidity distribution of produced nucleon pairs	5. Details of Glauber MC simulation	6. Model parameters for different energies
$\frac{dN_{B\bar{B}}}{dy} = N_{B\bar{B}} \frac{C}{1 + \exp\left(\frac{ y - y_m}{a}\right)}$ • <i>C</i> is normalization to 1 • <i>N_{BBbar}</i> set to reproduce the observed number of antiprotons $N_{\bar{p}} = \frac{1}{2} \int_{-y_b}^{y_b} \frac{dN_{B\bar{B}}}{dy} dy$ • <i>y_b</i> = 0.25 • data on antiproton pumbers taken from [2.2]	 Centrality is determined according to the multiplicity M ∝ 1 - α/2 N_w + αN_{bin} α(√s_{NN}) = α₀ + α₁ ln √s_{NN} The number of NNbar pairs fluctuates according to Poissonian with the mean proportional to N_w μ_{NN̄} = dN_{p̄}/dy y_m N_w/(N_w) where dN_{pbar}/dy is measured for given energy and centrality, and ⟨N⟩ is mean number of wounded nucleons at given centrality. Another than the second second	$\begin{array}{ c c c c c c }\hline \sqrt{s_{NN}} \ [\text{GeV}] & \alpha & y_m & N_{B\bar{B}} \\ \hline 7.7 & 0.110 & 0.519 & 0.8265 \\ 11.5 & 0.114 & 0.770 & 4.4790 \\ 19.6 & 0.120 & 1.019 & 16.946 \\ 27 & 0.123 & 1.128 & 27.1070 \\ 39 & 0.127 & 1.308 & 44.4262 \\ 62.4 & 0.132 & 1.384 & 75.2842 \\ 200 & 0.145 & 1.665 & 177.794 \\ \hline \end{array}$

numbers taken from [2,3]

Illustration for: $y_m = 1$, a = 0.08

is mean number of wounded nucleons at given centrality anu $\langle N_W \rangle$

7. Definitions

Central moments

$$\mu_1 = \langle n \rangle = \bar{n}$$

$$\mu_2 = \langle (n - \bar{n})^2 \rangle = \sigma^2$$

$$\mu_3 = \langle (n - \bar{n})^3 \rangle$$

$$\mu_4 = \langle (n - \bar{n})^4 \rangle$$

Scaled skewness and kurtosis

$$S\sigma = \frac{\mu_3}{\mu_2} = \frac{\chi_3}{\chi_2}$$
$$\kappa\sigma^2 = \frac{\mu_4}{\mu_2} - 3\mu_2 = \frac{\chi_4}{\chi_2}$$
$$\frac{\kappa\sigma^4}{\bar{n}} = \frac{\mu_4 - 3\mu_2^2}{\mu_1} = \frac{\chi_4}{\chi_1}$$

10. Basic exercise: net protons + fluctuating N_{w}

Comparison: fixed number of wounded nucleons vs. fluctuating N_w $\sqrt{s_{NN}} = 19.6 \text{ GeV}, N_{B\bar{B}} = 16.94, y_m = 1.019, N_w = 338$ 5×10^7 events, Glauber MC 1.2×10^6 events

13. Centrality dependence

 $\sqrt{s_{NN}} = 19.6 \text{ GeV}, y_m = 1.019, N_{B\bar{B}}/N_w = 0.050$ Statistics: 2×10^7 for fixed N_w , $\sim 5 \times 10^5$ for Glauber MC

8. Basic exercise: baryon number conservation

Moments of *B* number distribution depending on rapidity bin width around central rapidity – reproduced by binomial distribution. $\sqrt{s_{NN}} = 19.6 \text{ GeV}, N_{B\bar{B}} = 16.94, y_m = 1.019, N_w = 338$

 5×10^7 events

11. Results: net-proton number as function of y

Brewer et al [4]: search for critical point by looking at the rapidity dependence of cumulants, because μ_B depends on rapidity. Here: non-critical dependence of the moments on rapidity.

 $\sqrt{s_{NN}} = 19.6 \text{ GeV}, N_{B\bar{B}} = 16.94, y_m = 1.019, N_w = 338$ Glauber MC 1.2×10^6 events, $\Delta y = 0.5$

14. Collision energy dependence of net protons

rapidity bin $\Delta y = 0.5$ around y = 0

 2×10^7 events for fixed N_w, 1.2×10^6 events for Glauber MC

9. Basic exercise: net-protons vs. net baryons

Fluctuations of net baryon number compared to net-proton number $\sqrt{s_{NN}} = 19.6 \text{ GeV}, N_{B\bar{B}} = 16.94, y_m = 1.019, N_w = 338$ 5×10^7 events

12. Rapidity dependence for different energies

As panel 11, but for different energies.

Glauber MC, 1.2 x 10⁶ events

The minimum corresponds with the width of the rapidity distribution.

15. Conclusions

A "minimal" model for proton number fluctuations:

So and $\kappa \sigma^2$ are lowered towards more central events of wounded protons nucleons remember their isospin.

The importance of produced BBbar pairs grows with energy.

- rapidity dependent composition through two components:
- wounded nucleons and produced BBbar pairs
- Glauber MC (GLISSANDO 2)
- General formalism recently published by Braun-Munzinger *et al.* [5]

Findings:

- rapidity dependence of $\kappa \sigma^2$ with $\sqrt{s_{NN}}$ -dependent minimum
- baryon number conservation: decrease of S σ and $\kappa \sigma^2$ with • lower energies

References

- [1] M. Rybczyński et al., Comp. Phys. Commun. 185 (2014) 1759
- [2] STAR collab., Phys. Rev. C 79 (2009) 034909
- [3] STAR collab., Phys. Rev. C 96 (2017) 044904
- [4] J. Brewer *et al.*, Phys. Rev. C 98 (2018) 061901
- [5] P. Braun-Munzinger et al., arXiv:2007.02463