Monte Carlo Simulations of Upsilon Meson Production

Jaroslav Bielcik **Jakub Ceska** Leszek Kosarzewski Miroslav Myska

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University (CZ)

Interantional Conference on High Energy Physics
Prague
30.7.2020

1/3

Motivation

Production mechanism:

- ullet hard scattering $bar{b}$ production
- bound state formation colour singlet, colour octet channels

Sensitive to:

- interplay of soft and hard processes
- multiple parton interaction
- parton saturation signatures

Study of:

• Normalised Upsilon yield $N_{\Upsilon}/\langle N_{\Upsilon} \rangle$ in dependence on self-normalised event multiplicity $N_{\rm ch}/\langle N_{\rm ch} \rangle$

 [S. Chatrchyan et al. [CMS], JHEP 04 (2014), 103]
 [J. Adam, et al. [STAR], Phys. Lett. B 786 (2018), 87-93]

Results: Upsilon vs $N_{ch}/\langle N_{ch} \rangle$

Both PYTHIA and Herwig with $k_{\perp}=20$ GeV/c describe a stronger than linear increase in in normalised Upsilon yield dependence on normalised charged particle multiplicity. Herwig with $k_{\perp}=4$ GeV/c predicts a closer to linear development in higher multiplicities. STAR preliminary data taken from:

[L. Kosarzewski [STAR]: Overview of quarkonium production studies in the STAR experiment,

Presented at FAIRness 2019]

Conclusion

- The minimum bias spectra differ significantly for PYTHIA and Herwig in larger multiplicities
- Upsilon production in Herwig has limited validity
- Both PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$) predict stronger than linear increase in normalised Upsilon yield in dependence on normalised multiplicity
- In comparison to STAR preliminary data both PYTHIA and Herwig ($k_{\perp}=20$ GeV/c) predict higher values for larger multiplicities, while underestimating smaller multiplicity values
- The data suggests, that Upsilon mesons are produced in multi-parton collisions, due to stronger than linear increase predicted by PYTHIA and Herwig ($k_{\perp}=20~\text{GeV/c}$)