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Fermi-Weizsacker-Williams equivalent photons

Heavy nuclei Au, Pb have Z ~ 80
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equivalent photons

@ ion at rest: source of a Coulomb field, the highly boosted ion: sharp burst of field strength,
with |E|? ~ |B|?> and E- B ~ 0. (See e.g. J.D Jackson textbook).
@ acts like a flux of “equivalent photons” (photons are collinear partons).
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Finite size of particle — charge form factor
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The modulus of the charge form factor Fem(q) of the %7 Au nucleus for realistic charge distribution (solid). For
comparison we show the monopole form factor often used in practical applications (dashed).

From M. Ktusek, W. S. and A. Szczurek, Phys. Lett. B 674 (2009), 92-97



Ultraperipheral collisions

some examples of ultraperipheral processes:

A

photoabsorption on a nucleus

diffractive photoproduction with and without breakup/excitation of a nucleus

~y-fusion.

electromagnetic excitation/dissociation of nuclei. Excitation of Giant Dipole Resonances.
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the intact nuclei in the final state are not measured. Each of the photon exchanges is
associated with a large rapidity gap.

@ very small pr of the photoproduced system.



Dilepton production in semi-central collisions

@ dileptons from ~~ fusion have peak at very
low pair transverse momentum.

@ can they be visible even in semi-central
collisions?

@ WW photons are a coherent “parton cloud”
of nuclei, which can collide and produce
particles. Nuclei create an “underlying
event, in which e.g. plasma can be formed.

@ Early considerations in N. Baron and
G. Baur, Z. Phys. C 60 (1993).

@ a first hint of the relevance of
photoproduction mechanisms: a strong
enhancement of J/v¢ with Py < 300 MeV in
peripheral reactions: J. Adam et al.
[ALICE], Phys. Rev. Lett. 116 (2016) (for
early estimates, see M. Ktusek-Gawenda and
A. Szczurek, Phys. Rev. C 93 (2016) ).

@ Dileptons are a “classic” probe of the QGP:
medium modifications of p, thermal
dileptons... What is the competition
between the different mechanisms?




Dilepton production in semi-central collisions
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where the phase space element is d¢ = dy;dy_dp? with y1, p; and m; the single-lepton rapidities,
transverse momentum and mass, respectively, and
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@ we adopt the impact parameter definition of centrality
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Centrality

@ e.g. from optical limit of Glauber:
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@ fraction of inelastic hadronic events contained in the centrality class C,
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@ experimentally, centrality is determined by binning in multiplicity and/or transverse energy.



Dilepton production: impact parameter distribution
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@ semi-central collisions are situated on the left side of the distribution, below b < 15fm.

@ starting from RHIC energies, the contribution from coherent photons is practically
energy-independent.

@ also notice the long tails of the ultraperipheral part. Their importance rises with energy.



Thermal dilepton production

@ The calculation of thermal dilepton production from a near-equilibrated medium follows the
approach of R. Rapp and E. V. Shuryak, Phys. Lett. B 473 (2000); J. Ruppert, C. Gale,
T. Renk, P. Lichard and J. |. Kapusta, Phys. Rev. Lett. 100 (2008). R. Rapp and H. van
Hees, Phys. Lett. B 753 (2016) 586.

@ To compute dilepton invariant-mass spectra an integration of the thermal emission rate over
the space-time evolution of the expanding fireball is performed,

dNy, . Md3P  dNy
— = d*x ,
dM P, d*xd*P

where (Pg, P) and M = / P2 — P2 are the 4-vector (P = |P|) and invariant mass of the
lepton pair, respectively.

@ The thermal emission rate is expressed through the EM spectral function,
dNy Q%ML(M)

P = P fB(Po; T) (—guv)ImMisy (M, P; g, T) |

@ The fireball evolves through both QGP and hadronic phases. For the respective spectral
functions we employ in-medium quark-antiquark annihilation and in-medium vector spectral
functions in the hadronic sector.

@ Different centrality classes for different colliding systems are characterized by the measured
hadron multiplicities and appropriate initial conditions for the fireball.



Dilepton production in semi-central collisions
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Left panel: Dielectron invariant-mass spectra for pair-P7<0.15 GeV in Au+Au(,/Syv=200 GeV) collisions for 3
centrality classes including experimental acceptance cuts (p: >0.2GeV, |ne|<1 and |y 4. |<1) for v~ fusion
(solid lines), thermal radiation (dotted lines) and the hadronic cocktail (dashed lines); right panel: comparison of

the total sum (solid lines) to STAR data [1].

[1] data from J. Adam et al. [STAR Collaboration], Phys. Rev. Lett. 121 (2018) 132301.
@ also added is a contribution from decays of final state hadrons "cocktail” supplied by STAR.

@ the J/v contribution has been described e.g. in W. Zha, L. Ruan, Z. Tang, Z. Xu and
S. Yang, Phys. Lett. B 789 (2019), 238-242 [arXiv:1810.02064 [hep-ph]].



Pair transverse momentum distribution

@ Here we perform a simplified calculation by using b-integrated transverse momentum
dependent photon fluxes,
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@ analogous to TMD-factorization in hard processes. Note that experiment includes a cut

pt(lepton) > 0.2 GeV. Formfactors ensure that photon virtualities are much smaller then this
“hard scale”. We can thus treat them as on-shell in the vy — eTe™ cross section.

@ notice the extremely sharp peak in g¢, which is cut off only by w/v. The peak will move
towards smaller g: as the boost ~ increases.



Dilepton production in semi-central collisions
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P spectra of the individual contributions (line styles as in the previous figure) in 3 different mass bins for
60-80% central Au+Au collisions (/syy=200 GeV), compared to STAR data [1].

[1] J. Adam et al. [STAR Collaboration], Phys. Rev. Lett. 121 (2018) 132301.



Dilepton production in semi-central collisions
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Low-Pr (<0.2 GeV) acceptance-corrected dimuon invariant mass excess spectra in the rapidity range
3.3< Y}ﬁ“_ ’LAB<4.2 for MB In+In (y/syn=17.3 GeV) collisions at the SPS. Calculations for coherent -~ fusion
(solid line) and thermal radiation (dashed line) are compared to NA60 data [1].

[1] R. Arnaldi et al. [NA60 Collaboration], Eur. Phys. J. C 61 (2009) 711.



Dilepton production in semi-central collisions
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Our predictions for low-P7 dilepton radiation in Pb-+Pb (\/sSyy=5.02 TeV) collisions from coherent ~~ fusion
(solid lines) and thermal radiation (dashed lines) for three centrality classes and acceptance cuts as specified in

the figures.



Dilepton production in semi-central collisions
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Excitation function of low-Pr (<0.15 GeV) dilepton yields from ~~ fusion (solid lines) and thermal radiation
(dashed lines) in collisions of heavy nuclei (A~200) around midrapidity in three centrality classes, including
single—ei acceptance cuts.



Density matrix approach, (M. Ktusek-Gawenda, WS, A. Szczurek, in
preparation)

@ Electric field vector

@ Then we introduce the Wigner-type density matrix

d2o [ Q * Q
Nij(“’: b,q) = / (271_)2 exp[—ibQ] E; (w,q + 5) EJ (w’ q-— 5)

when summed over polarizations it reduces to the well-known WW flux after integrating over
q, and to the TMD photon flux after integrating over b.

@ cross section:

dwi d
do = /d2b1d2b25( (b — b1+bz)/ﬂﬂd2q d?q, 5D (P — g, — qy)

X Nij(wi, b1, q1)Niy(w2, b2, q5) gMiij]; do(tiT).

@ no independent sum over photon polarizations!

@ other approaches: M. Vidovic, M. Greiner, C. Best and G. Soff, Phys. Rev. C47 (1993);
K. Hencken, G. Baur and D. Trautmann, Phys. Rev. C 69 (2004) 054902; S. Klein et al.
(2020).



Density matrix approach
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@ In the vy CM, colliding photons can be in the J, = 0, -2 states.



Dilepton production in semi-central collisions (preliminary)

P, - pair distribution, Au Au collisions
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P spectra for 60-80% central Au+Au collisions (y/syy=200 GeV, 5020 GeV).

@ peak does not run away to Py — 0 with increasing energy, as in the naive TMD approach.



Summary

@ We have studied low-P7 dilepton production in ultrarelativistic heavy-ion collisions, by a
systematic comparisons of thermal radiation and photon-photon fusion within the coherent
fields of the incoming nuclei.

@ Comparison to recent STAR data: good description of low-Pt dilepton data in
Au-Au(/syn=200 GeV) collisions in three centrality classes, for invariant masses from
threshold to ~4 GeV.

@ Coherent emission dominant for the two peripheral samples, and comparable to the cocktail
and thermal radiation yields in semi-central collisions.

@ At SPS energies (/syv=17.3 GeV) we found that the v contribution is subleading. Only
relevant at low Py and near the dimuon threshold, rapidly falling off with increasing mass.

@ Impact-parameter dependent dilepton Pt distribution is described by a density matrix
generalization of the Weizsacker-Williams fluxes. Different weights of J, = 0, £2 channels of
the y7y-system. For et e~ pairs the J, = -2 channels dominate.
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