Jet Measurements in Heavy Ions with the ATLAS Experiment

Helena Santos

LIP, FCUL

on behalf of the ATLAS Collaboration

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

$$x_{\rm J} = p_{\rm T2}/p_{\rm T1}$$

ATLAS-CONF-2020-017

- The dijet momentum-balance in peripheral collisions is well compatible with pp collisions.
- Imbalance increases with increasing centrality.

Jets in HI collisions

First insight of jets produced at LHC indicated a large dijet asymmetry

ATLAS-CONF-2020-017

- The momentum-balance in peripheral collisions is well compatible with pp collisions.
- Imbalance increases with increasing centrality.
- The imbalance is weaker with increasing leading jet p_T .

Inclusive jet production in Pb+Pb

- Nuclear modification factor quantifies the change of yields, w.r.t. the production in vacuum.
- Any deviation from unity indicates suppression or enhancement of yields.

Inclusive jet production in Pb+Pb

(in vacuum)

- Nuclear modification factor quantifies the change of yields, w.r.t. the production in vacuum.
- Any deviation from unity indicates suppression or enhancement of yields.

Jets are suppressed by a factor of two in central Pb+Pb collisions with clear dependence on transverse momentum, p_T .

Path length dependence of quenching

ATLAS-CONF-2020-019

Unequal path lengths of the showers in the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^n v_n \cos(n(\phi - \Psi_n)),$$

Path length dependence of quenching

ATLAS-CONF-2020-019

Unequal path lengths of the showers in the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^n v_n \cos(n(\phi - \Psi_n)),$$

R=0.2 jets with $100 < p_T < 126 \text{ GeV}$ Unfolded in p_T and $\Delta \varphi_n$

Angular distribution of jets with respect to Ψ_2

Jets produced in the direction of the event-plane are less suppressed

Path length dependence of quenching

ATLAS-CONF-2020-019

Unequal path lengths of the showers in the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{n} v_n \cos(n(\phi - \Psi_n)),$$

R=0.2 jets with $100 < p_T < 126 \text{ GeV}$ Unfolded in p_T and $\Delta \varphi_n$

Angular distribution of jets with respect to Ψ_3

Smaller effect for n=3

Jet v_n

ATLAS-CONF-2020-019

The v_2 , v_3 and v_4 values for R=0.2 jets as a function of centrality

- Positive v₂, up to 4%.
- No dependence on the jet p_T within uncertainties.
- v_3 and v_4 compatible with 0.

A deeper insight

How is the parton shower modified in the hot and dense QCD medium?

What is the resolution scale of the quark-gluon plasma?

Does the jet suppression depend on substructure?

Inclusive fragmentation functions

Does the jet suppression depend on jet structure?

$$z \equiv p_{\rm T} \cos \Delta R / p_{\rm T}^{\rm jet}$$

$$D(z) = \frac{1}{N_{jet}} \frac{\mathrm{d}N}{\mathrm{d}z} \qquad D(p_T) = \frac{1}{N_{jet}} \frac{\mathrm{d}N}{\mathrm{d}p_T}$$

Inclusive fragmentation functions

 $z \equiv p_{\rm T} \cos \Delta R / p_{\rm T}^{\rm jet}$

Does the jet suppression depend on jet structure?

Phys. Rev. C 98, (2018) 024908

- Enhancement at low and high- $z(p_T)$.
- Suppression at intermediate $z(p_T)$.
- $D(z,(p_T))$ modifications do not scale with $p_{T,jet}$ at low-z(high- p_T).

Study *FF* as a function of the angular distance between the charged particle and the jet axis.

$$D(p_{\mathrm{T}}, r) = \frac{1}{N_{\mathrm{jet}}} \frac{1}{2\pi r} \frac{\mathrm{d}^2 n_{\mathrm{ch}}(r)}{\mathrm{d}r \mathrm{d}p_{\mathrm{T}}}$$

$$r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Study FF as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4$ GeV —> Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Study *FF* as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4$ GeV —> Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Study FF as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4$ GeV —> Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Jet core remains unmodified.

Study FF as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4$ GeV —> Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Jet core remains unmodified.

Yield of soft particles starts to drop down when $r \rightarrow 0.8$.

What can be learnt from large-R jets?

Measure jet R_{AA} as a function of jet sub-structure using sub-jets

J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

recluster jets and remove soft contributions

What can be learnt from large-R jets?

Measure jet R_{AA} as a function of jet sub-structure using sub-jets

J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

recluster jets and remove soft contributions

R = 0.2 jets with $p_T > 35$ GeV reclustered into anti-k_t R = 1.0Allows the study of k_t sppliting scale

$$\sqrt{d_{12}} = \min(p_{T,1}, p_{T,2}) \cdot \Delta R_{12}$$

R_{AA} as a function of jet p_T

 Large-R (re-clustered with 0.2 jets and soft particles removed) jets are increasingly suppressed with centrality.

R_{AA} as a function of jet p_T

ATLAS-CONF-2019-056

- Large-R (re-clustered with 0.2 jets and soft particles removed) jets are increasingly suppressed with centrality.
- R = 0.4 jets slightly less suppressed, but trend is similar.

R_{AA} as a function of jet sub-structure

$$\sqrt{d_{12}} = \min(p_{T,1}, p_{T,2}) \cdot \Delta R_{12}$$

The lowest $\sqrt{d_{12}}$ interval is populated with jets with single "isolated" sub-jet - SSJ

- Significant change of the R_{AA} magnitude between jets with SSJ and those with more complex sub-structure.
- Then R_{AA} is not dependent on $\sqrt{d_{12}}$.

R_{AA} as a function of jet sub-structure

ATLAS-CONF-2019-056

The lowest √d₁₂ interval is populated with jets with single "isolated" sub-jet - SSJ

- Significant change of the R_{AA} magnitude between jets with SSJ and those with more complex sub-structure.
- Then R_{AA} is not dependent on $\sqrt{d_{12}}$.
- This behaviour is not dependent on jet p_T (up to 500 GeV).

The Z boson tags the initial energy, direction, and flavour of the opposing parton before it starts to shower and propagate through the QGP.

Access to low- p_T ranges not reached by reconstructed jets —> precious for understanding the mechanisms of the parton energy loss.

- $Z \rightarrow ee$ or $Z \rightarrow \mu\mu$
- 76 < m_z < 106 GeV
- $p_{T}^{z} > 30 \text{ GeV}$

Measure the average number of charged particles per Z and

 I_{AA} = yield in Pb+Pb / yield in pp

Charged particles

p_Tch > 1 GeV

• $|\Delta \varphi| > 3\pi/4$

• |η| < 2.5

p_Tch-dependent
enhancement/
suppression pattern

- Z -> ee or $Z -> \mu\mu$
- $76 < m_z < 106 \text{ GeV}$
- $p_{T^z} > 30 \text{ GeV}$

Measure the average number of charged particles per Z and

 I_{AA} = yield in Pb+Pb / yield in pp

Charged particles

- *p*_Tch > 1 GeV
- $|\Delta \varphi| > 3\pi/4$
- $|\eta| < 2.5$

 p_T^Z plays a role in the enhancement/suppression pattern

- Z -> ee or $Z -> \mu\mu$
- $76 < m_z < 106 \text{ GeV}$
- $p_{T}^{z} > 30 \text{ GeV}$

Measure the average number of charged particles per Z and

 I_{AA} = yield in Pb+Pb / yield in pp

Charged particles

- p_Tch > 1 GeV
- $|\Delta \varphi| > 3\pi/4$
- $|\eta| < 2.5$

Good agreement with the predictions of the Hybrid model (JHEP 03 (2016) 053) in the entire p_T^{ch} range and for both p_T^Z selections.

Highlights

- Inclusive jets in Pb+Pb are suppressed relatively to pp up to a factor of 2.
- Evidence of path length dependence of jet energy loss.
- Jet substructure strongly modified in Pb+Pb collisions with onset at 4 GeV.
- Reclustered R=1.0 jets with single sub-jet less quenched than those with more complex substructure.
- Suppression of high-p_T hadrons in Z-tagged hadron yields; enhancement at low-p_T.

Backup

Data summary

Run 2 datasets

System	Year	Collision energy (TeV)	Luminosity
PbPb	2015	5.02	0.49/nb
pPb	2016	5.02	0.5/nb
pPb	2016	8.16	180/nb
pp (low μ)	2017	13	150/nb
XeXe	2017	5.44	3/µb
pp	2017	5.02	272/pb
pp (low µ)	2018	13	11/pb
PbPb	2018	5.02	1.73/nb

The ATLAS Detector

An excellent detector for the LHC Heavy-Ion program, with enourmous trigger capabilities

Collisions Centrality

Centrality in Heavy Ion collisions

How do particles re-distribute within the jet and beyond?³⁴

Study FF as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4$ GeV —> Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Jet core remains unmodified.

Hints for drop down when $r \rightarrow 0.8$.

 $R_{D(pT,r)}$ has no significant dependence on r in peripheral collisions.

Jet reconstruction

Large R jets reconstructed from R = 0.2 jets

Reconstruction performance

Systematic uncertainties on dijet p_T-balance

Systematic uncertainties on jet-v_n

Systematic uncertainties on $R_{D(pT,r)}$

