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Introduction

● A typical data analysis from a collider experiment (CMS or ATLAS) involves running 
over 10 TBs of data and simulation samples repeatedly over a period of a year or 
longer.

● Typical compressed event sizes for reduced data formats is few kilobytes per event 
(for eg CMS NANOAOD or the final ROOT skimmed ntuples used in any analysis)

● For each iteration of the analysis → few hundreds of batch jobs 

● Few hundred iterations over the course of a year → considerable time spent in 
computation

● GOAL : Reduce complexity and increase speed of these workflows→ deliver results 
from large datasets with faster turn-around times
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hepaccelerate: efficient analysis methods

● The standard HEP software framework 
based on ROOT → dynamically-sized 
arrays, complete C++ classes with 
arbitrary structure 

● High speed parallel computing with 
GPUs and FPGAs is increasingly popular 
these days.

● We developed an array based HEP 
computational analysis framework that 
is suitable for such parallel architecture 
needs: hepaccelerate.

● This is based on the approach first 
introduced in uproot and awkward-array 
python libraries
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Event 0

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

 

Event 1

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

 

Event 2

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

 

Event 800

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

 

Event 113124

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

 

Event 113125

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc  and so on 

….
 Typical ROOT HEP data format: Stacks of events 

with variable lengths of particle properties

Billions of 
rows

https://arxiv.org/abs/1508.07749
https://zenodo.org/record/3491423#.XwqAlJNKi3I
https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/awkward-array
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hepaccelerate: efficient analysis methods

We follow these simple steps to carry out an analysis with our new library:

1. Transform the data from a compressed events format to linear arrays of 
particle properties (using awkward-arrays)

2. Perform parallel computations on linear arrays using kernels

3. Save results

Disclaimer : The emphasis here is to show the computational performance and 
not reproduce already public physics results !

4



28 July  2020 ICHEP 2020, Irene Dutta

Linear arrays of particle properties with an 
additional array to mark event boundaries - 

introduced by awkward arrays

Transforming the data structure
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25.7 82.5 29.3 42.9 33.3Muon pT

Muon event 
boundaries

Jet pT

Jet event 
boundaries

0 5 12 19 25

Event 0 Event 2

….

….

….

Event 1

Event 0

….

0 3 4 8 13

12.5 5.1 112.3 68.9 23.5

Varying number of particles per event →loaded 
as sparse arrays with an underlying 

one-dimensional array for a single feature.
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Computational kernels
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● Kernel: a function that is evaluated on all elements of an array. For eg. 
compute the square root of all the values in an array

● If individual kernel calls across the data are independent of each other → 
evaluate in parallel using single-instruction,  multiple-data (SIMD) 
processors.

Image credit: Google images

Loop over each element 
of type A and type B to 

produce type C.

Matrix multiplication of 
column A with column 
B to produce column C.
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Computational kernels
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● Columnar data analysis approach based on single-threaded kernels is 
already recognized in HEP using the Coffea tool.

● hepaccelerate extends the computational efficiency and scalability of the 
kernels to parallel hardware such as multi-threaded CPUs and propose a 
GPU implementation.

● Idea : 

○ No looping over events to calculate variables per event ❌

○ Use linear arrays to perform parallel computation of physics variables 
across all events ➝ save time on expensive for loops ✅

https://zenodo.org/record/3358981#.XwqnCJNKi3I
https://zenodo.org/record/3491423#.XwqAlJNKi3I
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Example code : sum pT of jets i.e. HT

● offsets: 1D array marking 
event boundaries (length: 
N_events+1)

● pt_data : 1D array of jet pT 

● mask_rows : boolean mask of 
events (stores information of 
events passing selections; 
length: N_events)

● mask_content: boolean mask 
of jets (stores information of 
jets passing selections)

● out: Value of HT (length: 
N_events)

8

If event mask is 0, skip event

If jet mask is 1, add jet pT to the sum

CPU multi-threading enabled with 
Numba package; For GPUs, use 

CUDA (example in backup)

Some other such generic kernels 
are also already available in the 
library
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Benchmarking hepaccelerate with CERN Open Data
Top quark pair analysis using 8TeV CMS Open Data from 2012.

9

H→ZZ→4l with the 13 TeV Atlas Open Data 

Works well for 
data formats 
from different 
experiments

Reproduce our CMS Open Data results from here

http://opendata.cern.ch/docs/about-cms
http://atlas.cern/resources/opendata
https://github.com/hepaccelerate/hepaccelerate#full-example-analysis
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Benchmarking hepaccelerate with CMS Open Data

● Top quark pair analysis using CMS Open Data from 2012.

● Results on 144 GB of CMS Open data.

● Goal : Study computational performance 

● The benchmark analysis implements the following features: 

○ event selections and object selections : trigger bit, missing transverse energy selection, jet/lepton 
selections based on pT, η etc

○ event weight computation based on histogram lookups: pileup re-weighting, lepton efficiency corrections

○ jet energy correction systematics based on histogram lookups (computational complexity ~40x higher)

○ high-level variable reconstruction:  top quark candidate from jet triplet with invariant mass closest to 173 
GeV

○ Multilayer, feedforward DNN evaluation using tensorflow with ~40 typical high-level inputs

○ saving all DNN inputs and outputs, along with systematic variations to ~ 1000 histograms

                                 
10

http://opendata.cern.ch/docs/about-cms
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Benchmarking performance with CMS Open Data
● We observe the following things:

○ GPU-accelerated version performs ~12x faster than a 
single multi-threaded CPU.

○ complex analysis where the main workload is repeated 
around 40x (for eg. applying full set of jet energy 
correction systematics)→ 15x faster on a GPU-version 
than on a CPU.   

● Important to balance overhead of kernel scheduling with the 
time spent in the computation → run on large datasets .

● Encouraging to see physics analysis methods can be 
implemented easily on GPUs

● A small number of multi-GPU machines can be viable for the 
future → choice driven by availability and pricing of 
resources.  
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Use 8 Nvidia GTX 1080 GPUs, 2 compute streams per 
device → reduce the analysis runtime by a factor of  

12x compared to using multiple threaded CPU
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Summary and Outlook

● We demonstrate the possibility of carrying out high-energy physics data analysis 
with 

○ Efficient input data preparation using linear arrays

○ Using specialized kernels for parallel computation on arrays (implemented in 
Python using the Numba package for multi-threaded CPU)

●  Also possible to do these array computations using GPUs, which are highly efficient 
at parallel processing .

● This library is generic and can be used on data formats from different collider 
experiments.

● We show that it’s possible to run an order of magnitude faster on a multi-GPU 
machine as compared to using a single multi-threaded CPU.

12
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Backup

13
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Some generic kernels

Some general purpose kernels already available in the library : 

● sum_in_offsets: given jagged data with offsets, calculates the sum of the values 
within the rows. For eg. compute observables such as HT.

● fill_histogram:  given a data array, a weight array, histogram bin edges and 
contents, fills the weighted data to the histogram. This is used to create 
1-dimensional histograms that are common in HEP. Extension to multidimensional 
histograms is straightforward.

● get_bin_contents: given a data array and a lookup histogram, retrieves the bin 
contents corresponding to each data array element.  

And so on ….

14
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Benchmarking with Atlas Open Data

● Reproduce the H→ZZ→4l with the Atlas Open 
Data 

● Goal: Show reproducibility with different data 
formats

● The benchmark analysis implements the 
following features: 

● object selections : lepton selections 
based on pT, η, charge etc

● event weight computation

● high-level variable reconstruction:  
Invariant mass of 4 leptons 

15

http://atlas.cern/resources/opendata
http://atlas.cern/resources/opendata
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Example code : sum pT of jets (i.e. HT) using GPUs
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● offsets: 1D array marking 
event boundaries (length: 
N_events+1)

● pt_data : 1D array of jet pT 

● mask_rows : boolean mask of 
events (stores information of 
events passing selections; 
length: N_events)

● mask_content: boolean mask 
of jets (stores information of 
jets passing selections)

● out: Value of HT (length: 
N_events)

If event mask is 0, skip event

If jet mask is 1, add jet pT to the sum

Run in parallel over GPUs using 
CUDA

Minimal changes to code to run over GPU !
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Benchmarking with CMS Open Data
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