
Data Analysis with GPU-Accelerated
Kernels

ICHEP 2020
28 July, 2020

Irene Dutta1, Nan Lu1, Harvey Newman1, Joosep Pata1, Maria Spiropulu1,
Jean-Roch Vlimant1, Christina Reissel2, Daniele Ruini2

1California Institute of Technology

2ETH Zurich 1

28 July, 2020 ICHEP 2020, Irene Dutta

Introduction

● A typical data analysis from a collider experiment (CMS or ATLAS) involves running
over 10 TBs of data and simulation samples repeatedly over a period of a year or
longer.

● Typical compressed event sizes for reduced data formats is few kilobytes per event
(for eg CMS NANOAOD or the final ROOT skimmed ntuples used in any analysis)

● For each iteration of the analysis → few hundreds of batch jobs

● Few hundred iterations over the course of a year → considerable time spent in
computation

● GOAL : Reduce complexity and increase speed of these workflows→ deliver results
from large datasets with faster turn-around times

2

28 July, 2020 ICHEP 2020, Irene Dutta

hepaccelerate: efficient analysis methods

● The standard HEP software framework
based on ROOT → dynamically-sized
arrays, complete C++ classes with
arbitrary structure

● High speed parallel computing with
GPUs and FPGAs is increasingly popular
these days.

● We developed an array based HEP
computational analysis framework that
is suitable for such parallel architecture
needs: hepaccelerate.

● This is based on the approach first
introduced in uproot and awkward-array
python libraries

3

Event 0

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

Event 1

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

Event 2

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

Event 800

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

Event 113124

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc

Event 113125

Muons:
● i=0 : pT, η, φ, charge etc
● i=1 : pT, η, φ, charge etc
● i=2 : pT, η, φ, charge etc

Jets:
● i=0 : pT, η, φ, flavour etc
● i=1 : pT, η, φ, flavour etc
● i=2 : pT, η, φ, flavour etc
● i=3 : pT, η, φ, flavour etc
● i=4 : pT, η, φ, flavour etc
● i=5 : pT, η, φ, flavour etc and so on

….
 Typical ROOT HEP data format: Stacks of events

with variable lengths of particle properties

Billions of
rows

https://arxiv.org/abs/1508.07749
https://zenodo.org/record/3491423#.XwqAlJNKi3I
https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/awkward-array

28 July, 2020 ICHEP 2020, Irene Dutta

hepaccelerate: efficient analysis methods

We follow these simple steps to carry out an analysis with our new library:

1. Transform the data from a compressed events format to linear arrays of
particle properties (using awkward-arrays)

2. Perform parallel computations on linear arrays using kernels

3. Save results

Disclaimer : The emphasis here is to show the computational performance and
not reproduce already public physics results !

4

28 July 2020 ICHEP 2020, Irene Dutta

Linear arrays of particle properties with an
additional array to mark event boundaries -

introduced by awkward arrays

Transforming the data structure

5

25.7 82.5 29.3 42.9 33.3Muon pT

Muon event
boundaries

Jet pT

Jet event
boundaries

0 5 12 19 25

Event 0 Event 2

….

….

….

Event 1

Event 0

….

0 3 4 8 13

12.5 5.1 112.3 68.9 23.5

Varying number of particles per event →loaded
as sparse arrays with an underlying

one-dimensional array for a single feature.

28 July, 2020 ICHEP 2020, Irene Dutta

Computational kernels

6

● Kernel: a function that is evaluated on all elements of an array. For eg.
compute the square root of all the values in an array

● If individual kernel calls across the data are independent of each other →
evaluate in parallel using single-instruction, multiple-data (SIMD)
processors.

Image credit: Google images

Loop over each element
of type A and type B to

produce type C.

Matrix multiplication of
column A with column
B to produce column C.

28 July, 2020 ICHEP 2020, Irene Dutta

Computational kernels

7

● Columnar data analysis approach based on single-threaded kernels is
already recognized in HEP using the Coffea tool.

● hepaccelerate extends the computational efficiency and scalability of the
kernels to parallel hardware such as multi-threaded CPUs and propose a
GPU implementation.

● Idea :

○ No looping over events to calculate variables per event ❌

○ Use linear arrays to perform parallel computation of physics variables
across all events ➝ save time on expensive for loops ✅

https://zenodo.org/record/3358981#.XwqnCJNKi3I
https://zenodo.org/record/3491423#.XwqAlJNKi3I

28 July, 2020 ICHEP 2020, Irene Dutta

Example code : sum pT of jets i.e. HT

● offsets: 1D array marking
event boundaries (length:
N_events+1)

● pt_data : 1D array of jet pT

● mask_rows : boolean mask of
events (stores information of
events passing selections;
length: N_events)

● mask_content: boolean mask
of jets (stores information of
jets passing selections)

● out: Value of HT (length:
N_events)

8

If event mask is 0, skip event

If jet mask is 1, add jet pT to the sum

CPU multi-threading enabled with
Numba package; For GPUs, use

CUDA (example in backup)

Some other such generic kernels
are also already available in the
library

28 July, 2020 ICHEP 2020, Irene Dutta

Benchmarking hepaccelerate with CERN Open Data
Top quark pair analysis using 8TeV CMS Open Data from 2012.

9

H→ZZ→4l with the 13 TeV Atlas Open Data

Works well for
data formats
from different
experiments

Reproduce our CMS Open Data results from here

http://opendata.cern.ch/docs/about-cms
http://atlas.cern/resources/opendata
https://github.com/hepaccelerate/hepaccelerate#full-example-analysis

28 July, 2020 ICHEP 2020, Irene Dutta

Benchmarking hepaccelerate with CMS Open Data

● Top quark pair analysis using CMS Open Data from 2012.

● Results on 144 GB of CMS Open data.

● Goal : Study computational performance

● The benchmark analysis implements the following features:

○ event selections and object selections : trigger bit, missing transverse energy selection, jet/lepton
selections based on pT, η etc

○ event weight computation based on histogram lookups: pileup re-weighting, lepton efficiency corrections

○ jet energy correction systematics based on histogram lookups (computational complexity ~40x higher)

○ high-level variable reconstruction: top quark candidate from jet triplet with invariant mass closest to 173
GeV

○ Multilayer, feedforward DNN evaluation using tensorflow with ~40 typical high-level inputs

○ saving all DNN inputs and outputs, along with systematic variations to ~ 1000 histograms

10

http://opendata.cern.ch/docs/about-cms

28 July, 2020 ICHEP 2020, Irene Dutta

Benchmarking performance with CMS Open Data
● We observe the following things:

○ GPU-accelerated version performs ~12x faster than a
single multi-threaded CPU.

○ complex analysis where the main workload is repeated
around 40x (for eg. applying full set of jet energy
correction systematics)→ 15x faster on a GPU-version
than on a CPU.

● Important to balance overhead of kernel scheduling with the
time spent in the computation → run on large datasets .

● Encouraging to see physics analysis methods can be
implemented easily on GPUs

● A small number of multi-GPU machines can be viable for the
future → choice driven by availability and pricing of
resources.

11

Use 8 Nvidia GTX 1080 GPUs, 2 compute streams per
device → reduce the analysis runtime by a factor of

12x compared to using multiple threaded CPU

28 July, 2020 ICHEP 2020, Irene Dutta

Summary and Outlook

● We demonstrate the possibility of carrying out high-energy physics data analysis
with

○ Efficient input data preparation using linear arrays

○ Using specialized kernels for parallel computation on arrays (implemented in
Python using the Numba package for multi-threaded CPU)

● Also possible to do these array computations using GPUs, which are highly efficient
at parallel processing .

● This library is generic and can be used on data formats from different collider
experiments.

● We show that it’s possible to run an order of magnitude faster on a multi-GPU
machine as compared to using a single multi-threaded CPU.

12

28 July 2020 ICHEP 2020, Irene Dutta

Backup

13

28 July, 2020 ICHEP 2020, Irene Dutta

Some generic kernels

Some general purpose kernels already available in the library :

● sum_in_offsets: given jagged data with offsets, calculates the sum of the values
within the rows. For eg. compute observables such as HT.

● fill_histogram: given a data array, a weight array, histogram bin edges and
contents, fills the weighted data to the histogram. This is used to create
1-dimensional histograms that are common in HEP. Extension to multidimensional
histograms is straightforward.

● get_bin_contents: given a data array and a lookup histogram, retrieves the bin
contents corresponding to each data array element.

And so on ….

14

28 July, 2020 ICHEP 2020, Irene Dutta

Benchmarking with Atlas Open Data

● Reproduce the H→ZZ→4l with the Atlas Open
Data

● Goal: Show reproducibility with different data
formats

● The benchmark analysis implements the
following features:

● object selections : lepton selections
based on pT, η, charge etc

● event weight computation

● high-level variable reconstruction:
Invariant mass of 4 leptons

15

http://atlas.cern/resources/opendata
http://atlas.cern/resources/opendata

28 July, 2020 ICHEP 2020, Irene Dutta

Example code : sum pT of jets (i.e. HT) using GPUs

16

● offsets: 1D array marking
event boundaries (length:
N_events+1)

● pt_data : 1D array of jet pT

● mask_rows : boolean mask of
events (stores information of
events passing selections;
length: N_events)

● mask_content: boolean mask
of jets (stores information of
jets passing selections)

● out: Value of HT (length:
N_events)

If event mask is 0, skip event

If jet mask is 1, add jet pT to the sum

Run in parallel over GPUs using
CUDA

Minimal changes to code to run over GPU !

28 July, 2020 ICHEP 2020, Irene Dutta

Benchmarking with CMS Open Data

17

