Electroweak probes in heavy-ion collisions with ATLAS

Jakub Kremer for the ATLAS Collaboration 28 July 2020

Johannes Gutenberg University Mainz

ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

- Measurements of electroweak (γ, W, Z) bosons in proton-proton collisions provide precise tests of Standard Model predictions including both the EW theory and QCD.
- They are also important to set a reference for heavy-ion analyses.
- In **proton-nucleus** collisions, one can probe **cold nuclear matter effects** such as nuclear modifications of PDFs or energy loss of initial-state partons.
- Nucleus-nucleus collisions at LHC energies create a strongly interacting quark-gluon plasma, which however does not significantly affect EW bosons or their leptonic decay products.
- In addition to cold nuclear matter effects, the **collision centrality and geometry** can be studied through *T*_{AA} scaling of EW boson production.
- Presentation of results from:
 - W/Z production in pp at $\sqrt{s} = 5.02$ TeV (2015 dataset): Eur. Phys. J. C 79 (2019) 128, erratum: Eur. Phys. J. C 79 (2019) 374
 - + γ production in *p*+Pb at $\sqrt{s_{\rm NN}}$ = 8.16 TeV: Phys. Lett. B 796 (2019) 230
 - W production in Pb+Pb at $\sqrt{s_{NN}}$ = 5.02 TeV (2015 dataset): Eur. Phys. J. C 79 (2019) 935
 - $\cdot\,$ Z production in Pb+Pb at $\sqrt{s_{\rm NN}}=5.02$ TeV (2015 dataset): Phys. Lett. B 802 (2020) 135262

ATLAS detector / Datasets

- $\cdot\,$ Charged particle tracking in $|\eta|<$ 2.5 \rightarrow electrons, muons, track MET
- Calorimeter system in $|\eta| < 4.9 \rightarrow$ electrons, photons, MET, centrality determination (forward calorimeters, $3.1 < |\eta| < 4.9$)
- Muon reconstruction in $|\eta| < 2.4$ (muon spectrometer + inner detector)

Datasets:

- Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV: 0.49 nb⁻¹ (2015)
- p+Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV: 165 nb⁻¹ (2016)
- pp collisions at $\sqrt{s} = 5.02$ TeV: 25 pb⁻¹ (2015)

W/Z bosons in *pp* collisions at $\sqrt{s} = 5.02$ TeV

- Following **typical measurement strategy** for *W*/*Z* boson production at hadron colliders:
 - W: single isolated lepton with large p_T^{ℓ} (> 25 GeV), events with large missing transverse energy (E_T^{miss} > 25 GeV) and transverse mass (m_T > 40 GeV)
 - Z: isolated leptons with large p_T^{ℓ} (> 20 GeV), opposite-charge same-flavour lepton pairs in mass range 66 < $m_{\ell\ell}$ < 116 GeV
- Separate measurements of cross-sections in electron and muon decay channels.
- **Combination** of decay channels using the BLUE method **accounting for uncertainty correlations**.
- Summary of uncertainties for integrated fiducial cross-sections:
 - $\cdot~\sim$ 1.3% (stat.+syst.)
 - 1.9% (lumi)

Eur. Phys. J. C 79 (2019) 128 and 79 (2019) 374

- Comparison to several NNLO theory predictions (different PDF sets) calculated with DYTURBO¹.
- Good agreement of predictions from NNPDF3.1 and HERAPDF 2.0 PDFs with data, while other PDF sets systematically tend to underestimate measured cross-sections.
- Well understood and precise reference for measurements in Pb+Pb collisions.

¹ S. Camarda et al., EPJC 80 (2020) 251

6

Prompt photons in p+Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

- Events collected with single-photon triggers (E_T^{γ} thresholds from 15 to 35 GeV).
- Photons required to pass reconstruction quality and isolation selections.
- + Kinematic selections: $E_{\rm T}^\gamma$ > 20 GeV, $|\eta_\gamma^{\rm lab}|$ < 1.37 or 1.56 < $|\eta_\gamma^{\rm lab}|$ < 2.37
- Due to asymmetric collision system, pseudorapidity in center-of-mass frame is shifted with respect to laboratory frame: $\eta^* = \eta^{lab} 0.465$
- Background estimation using sidebands in isolation and identification (purity between 45% and 99%).

- No direct **reference** measurement in *pp* collisions, **existing results at 8 TeV extrapolated to 8.16 TeV** using NLO calculations from PYTHIA8 and JETPHOX.
- At forward and central rapidities, *R*_{pPb} values consistent with unity.
- For backward rapidities, the R_{pPb} seems to decrease at high E_T^{γ} which can be explained by different fractions of *u* and *d* quarks in the proton and the Pb nucleus.
- Comparison to model predictions suggests **no large initial-state parton energy loss**.

Prompt photons in p+Pb: Forward-backward R_{pPb} ratios JG U

- Reduction of systematic uncertainties for ratios of forward and backward R_{pPb}.
- Comparison to **NLO calculations** from JETPHOX using **free-nucleon PDFs** (CT14) and **nPDFs** (EPPS16 and nCTEQ15).
- The free-nucleon prediction shows the best agreement with data.
- Data also **compatible with small nuclear modifications** represented by nPDFs in most of the considered E_T^{γ} range.

W/Z bosons in Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

W/Z bosons in Pb+Pb: Measurement strategy

Eur. Phys. J. C 79 (2019) 935

- General measurement strategy similar to pp analyses with some differences:
 - ZDC used to reject EM/photonuclear background in peripheral collisions, as well as pile-up events
 - W: E^{miss} reconstructed from charged-particle tracks instead of particle-flow algorithm, centrality dependent multi-jet background
 - Z: suppression of EM/photonuclear background in peripheral collisions using rapidity gaps
- Same fiducial phase-space volumes as for the *pp* cross-sections.
- Nuclear modification factor defined as:

$$R_{AA} = rac{1}{\langle T_{AA}
angle} rac{N_{W[Z]}/N_{evt}}{\sigma^{pp}_{W[Z]}}$$

- $\cdot N_{W[Z]}/N_{evt}$ yield per inelastic Pb+Pb collision
- $\cdot \ \langle T_{AA} \rangle$ mean nuclear thickness function
- σ^{pp}_{WIZI} cross-section measured in *pp* collisions
- Note: $\langle T_{AA} \rangle$ and centrality classification are dependent on details of Glauber modelling

W/*Z* bosons in Pb+Pb: Yields differential in rapidity

Eur. Phys. J. C 79 (2019) 935

Phys. Lett. B 802 (2020) 135262

V

0.8

IG

- Comparison to several NLO theory predictions calculated with MCFM using:
 - free-nucleon CT14 PDFs (with isospin effect)
 - EPPS16 nPDFs
 - nCTEQ15 nPDFs
- Good agreement of free-nucleon PDF predictions with *W* boson data, but some underestimation for *Z* boson data.
- Predictions from nPDFs are 10-20% below data.

W/Z bosons in Pb+Pb: Yields differential in $\langle N_{part} \rangle$

IG

- Yields are approximately constant with centrality (represented by $\langle N_{part} \rangle$).
- For *W* bosons, there is hint of increase in the most peripheral collisions, but deviations from a constant are not larger than 1.7σ .
- Data are in **good agreement** with predictions using **free-nucleon** CT14 PDFs and accounting for **isospin effect**.
- Measurements in peripheral collisions limited by $\langle T_{AA} \rangle$ uncertainty.
- Replace R_{AA} for other hard probes with $Z_{AA} = \frac{N_{AA}^{X} \cdot \sigma_{Dp}^{Z}}{\sigma_{Dp}^{X} \cdot N_{AA}^{Z}}$? 14

W bosons in Pb+Pb: Neutron skin effect

Eur. Phys. J. C 79 (2019) 935

- Comparison of yields extracted using **geometric parameters from two versions of MCGlauber code**.
- MCGlauber v3.2 provides separate radial profiles for protons and neutrons.
- Effect on measured yields is smaller than measurement uncertainties.
- Deviations from a constant yield in peripheral collisions are not fully explained by neutron skin effect (a few % increase for W⁻ and decrease for W⁺).

W/Z bosons in Pb+Pb: Nuclear modification factor

- For *W* bosons, deviations from unity are expected from isospin effect.
- $\cdot\,$ Deviations from free-nucleon CT14 PDF predictions do not exceed 1.8 $\sigma.$
- Comparison of **measured nuclear modification factors** with predictions incorporating **centrality bias from HG-PYTHIA model**.
- Trends for *W/Z* bosons do not follow the HG-PYTHIA prediction, but details of soft-particle production are different than for jet production.

K. Eskola et al., arXiv:2003.11856

- How can these measurements be used to improve our understanding of collision centrality and geometry?
- ATLAS estimates geometric parameters of Pb+Pb collisions (e.g. (*T*_{AA})) using the MCGlauber model.
- This procedure assumes the inelastic nucleon-nucleon cross-section to be unmodified ($\sigma_{nn}^{inel} = \sigma_{pp}^{inel} = 70 \pm 5$ mb).
- Recent theoretical study uses the ATLAS *W/Z* data to show that σ_{nn}^{inel} could be **potentially suppressed** ($\sigma_{nn}^{inel} = 41.5^{+16.2}_{-12.0}$ mb).
- This is equivalent to a modification of (T_{AA}) with centrality such that the measured R_{AA} would flatten.

W/Z bosons in Pb+Pb: Interpretation?

Phys. Lett. B 802 (2020) 135262

CMS-PAS-HIN-19-003

- Recent CMS measurement of Z boson production shows significant decrease of yields in peripheral collisions.
- **Possible source of discrepancy**: details of **centrality determination** procedures, in particular in the treatment of peripheral collisions.
- Note: ATLAS results use MCGlauber v2.4, CMS measurement uses MCGlauber v3.2.
- Needs to be followed up by centrality experts from both experiments.

Summary

- Presented recent ATLAS measurements of electroweak boson production in *pp* and Pb+Pb collsions at 5.02 TeV, and in *p*+Pb collisions at 8.16 TeV.
- pp collisions:
 - W/Z boson measurements provide high-precision reference for Pb+Pb results.
- *p*+Pb collisions:
 - Measured nuclear modifications consistent with **nPDF predictions**, but disfavour large **initial-state parton energy loss**.
- Pb+Pb collisions:
 - Data best described using free-nucleon PDFs, while nPDF predictions tend to underestimate measurements.
 - Measurements consistent with expectations from *T*_{AA} scaling, no significant dependence of yields on centrality (slight increase in peripheral collisions).
 - Very limited experimental sensitivity to neutron skin effect.
- Before interpreting the data, need to resolve discrepancy with CMS results.
- Large Pb+Pb dataset collected in 2018 (3.5 times larger luminosity than in 2015) to be explored.

Additional slides

W/Z bosons in *pp*: Lepton efficiencies

Eur. Phys. J. C 79 (2019) 128 and 79 (2019) 374

• Efficiencies measured with the tag-and-probe method in $Z \rightarrow \ell \ell$ events in data.

PDF set	$\sigma_{W^+}^{\rm fid}[{\rm pb}]$	$\sigma^{\rm fid}_{W^-}[{\rm pb}]$	$\sigma_Z^{\rm fid} [{\rm pb}]$	$\sigma_{W^+}^{\text{tot}} [\text{pb}]$	$\sigma_{W^{-}}^{\rm tot}[{\rm pb}]$	$\sigma_Z^{\rm tot}[{\rm pb}]$
CT14 NNLO	2203^{+62}_{-64}	1379_{-42}^{+34}	356^{+8}_{-10}	4299^{+112}_{-113}	2862^{+63}_{-77}	648^{+14}_{-16}
NNPDF3.1	2280 ± 27	1403 ± 17	371 ± 4	4393 ± 48	2926 ± 31	682 ± 7
MMHT2014	2244_{-39}^{+40}	1393^{+24}_{-28}	363^{+6}_{-5}	4357_{-73}^{+75}	2902^{+49}_{-57}	660^{+11}_{-10}
HERAPDF2.0	2291^{+92}_{-61}	1440_{-27}^{+42}	369^{+14}_{-7}	4459_{-108}^{+180}	3042^{+94}_{-56}	675_{-13}^{+24}
ABMP16	2205 ± 19	1363 ± 14	362 ± 3	4298 ± 37	2819 ± 32	654 ± 6
Additional uncertainties						
$\alpha_{\rm S}$	± 17	$^{+13}_{-11}$	$^{+3}_{-2}$	$^{+31}_{-29}$	$^{+27}_{-22}$	± 5
$\mu_{\rm\scriptscriptstyle R},\mu_{\rm\scriptscriptstyle F}$ scales	$^{+18}_{-11}$	$^{+11}_{-8}$	± 1	$^{+25}_{-36}$	$^{+13}_{-15}$	$^{+3}_{-4}$
Data	2266 ± 53	1401 ± 33	374.5 ± 8.6	_	-	-

- + W^+ : 2266 ± 9 (stat.) ± 29 (syst.) ± 43 (lumi) pb
- + W^- : 1401 \pm 7 (stat.) \pm 18 (syst.) \pm 27 (lumi) pb
- + Z: 374.5 \pm 3.4 (stat.) \pm 3.6 (syst.) \pm 7.0 (lumi) pb

$R_{W^+/W^-}^{\mathrm{fid}}$	$1.617 \pm 0.012 \text{ (stat)} \pm 0.003 \text{ (syst)}$
$R_{W/Z}^{\mathrm{fid}}$	$9.81 \pm 0.13 \; (\text{stat}) \pm 0.01 \; (\text{syst})$
$R_{W^+/Z}^{\mathrm{fid}}$	$6.06 \pm 0.08 \text{ (stat)} \pm 0.01 \text{ (syst)}$
$R_{W^-/Z}^{\text{fid}}$	$3.75 \pm 0.05 \text{ (stat)} \pm 0.01 \text{ (syst)}$

W/*Z* bosons in *pp*: Systematic uncertainties

	$\delta\sigma_{W^+}$ [%]	$\delta\sigma_{W^{-}}$ [%]	$\delta\sigma_Z$ [%]
Trigger efficiency	0.2	0.2	< 0.1
Reconstruction efficiency	0.2	0.2	0.4
Identification efficiency	0.6	0.5	1.0
Isolation efficiency	0.4	0.4	0.6
Electron $p_{\rm T}$ resolution	< 0.1	< 0.1	0.1
Electron $p_{\rm T}$ scale	0.3	0.2	0.1
Hadronic recoil calibration	0.5	0.4	-
Multi-jet background	0.7	0.8	< 0.1
Electroweak+top background	0.1	0.1	< 0.1
Data statistical uncertainty	0.6	0.7	1.4

	$\delta\sigma_{W^+}$ [%]	$\delta\sigma_{W^{-}}$ [%]	$\delta\sigma_Z$ [%]
Trigger efficiency	1.4	1.4	0.4
Reconstruction efficiency	0.2	0.2	0.4
Isolation efficiency	0.4	0.4	0.7
Muon $p_{\rm T}$ resolution	0.1	< 0.1	< 0.1
Muon $p_{\rm T}$ scale	0.1	0.1	< 0.1
Hadronic recoil calibration	0.5	0.5	-
Multi-jet background	0.1	0.2	< 0.1
Electroweak+top background	0.1	0.2	< 0.1
Data statistical uncertainty	0.5	0.6	1.2

W/Z bosons in pp: Lepton charge asymmetry

$$A_{\ell}(|\eta_{\ell}|) = \frac{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}$$

Prompt photons in *p*+Pb: Efficiencies, extrapolation

Prompt photons in *p*+Pb: Systematic uncertainties

W bosons in Pb+Pb: Correction factors

Eur. Phys. J. C 79 (2019) 935

• C_W factors account mainly for detector effects, such as lepton calibration and efficiencies, and p_T^{miss} reconstruction.

Eur. Phys. J. C 79 (2019) 935

W bosons in Pb+Pb: Lepton charge asymmetry

Eur. Phys. J. C 79 (2019) 935

$$A_{\ell}(|\eta_{\ell}|) = \frac{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}$$

Z bosons in Pb+Pb: Lepton efficiencies

Phys. Lett. B 802 (2020) 135262

• Efficiencies measured with the tag-and-probe method in $Z \rightarrow \ell \ell$ events in data and simulation.

Z bosons in Pb+Pb: Systematic uncertainties

Phys. Lett. B 802 (2020) 135262

Phys. Lett. B 802 (2020) 135262

