

Overview of the latest jet physics results from ALICE James Mulligan for the ALICE Collaboration

James Mulligan for the ALICE Collal Lawrence Berkeley National Lab

ICCUPER DATABANA STATE40th INTERNATIONAL CONFERENCE
ON HIGH ENERGY PHYSICSVIRTUAL
CONFERENCE28 JULY - 6 AUGUST 2020

Fundamental QCD with Jets

proton-proton collisions

Test pQCD techniques: Parton showers, resummations, power corrections, ...

Constrain non-perturbative effects: Hadronization, underlying event

Constrain PDFs, α_s

Reference for heavy-ion collisions: Which observables are under theoretical control?

James Mulligan, Lawrence Berkeley National Lab

Fundamental QCD with Jets

proton-proton collisions

Test pQCD techniques: Parton showers, resummations, power corrections, ...

Constrain non-perturbative effects: Hadronization, underlying event

Constrain PDFs, α_s

Reference for heavy-ion collisions: Which observables are under theoretical control?

James Mulligan, Lawrence Berkeley National Lab

Pb-Pb collisions

Test models of jet quenching in the quark-gluon plasma: Strongly-coupled vs. weakly-coupled jetmedium interaction, ...

Constrain medium bulk properties:

Transverse momentum diffusion coefficient, \hat{q}

Constrain structure of the quark-gluon plasma:

What are the relevant degrees of freedom? Quasiparticle structure?

Test factorization/universality in high-T QCD

Jets in ALICE

ALICE reconstructs jets at mid-rapidity ($|\eta| < 0.9$) with a high-precision tracking system (ITS+TPC) and EMCal

Charged particle jets

- Pro: High-precision spatial resolution to resolve particles; Experimentally simpler
 - Ideal for precise jet substructure measurements
- Con: Additional modeling to compare to theory
- **Full jets** (charged tracks + EMCal π^0 , γ)
 - Pro: Direct comparison to theory
 - Con: Significant experimental complication; Limited EMCal coverage

ALICE is very good for:

- Jet substructure
- Low- p_T tracks: 150 MeV/c
- Particle Identification

ALICE is not so good for:

- High statistics

• High $p_{\rm T} > ~100 \, {\rm GeV}/c$ Jets at forward/backward rapidity

EMCal φ acceptance: 107°

A powerful class of observables

Sensitive to a wide span of scales Many are analytically calculable from pQCD

James Mulligan, Lawrence Berkeley National Lable radiation

ICHEP 2020

A powerful class of observables

Sensitive to a wide span of scales Provide complementary information to disentangle multiple QCD effects Many are analytically calculable from pQCD

James Mulligan, Lawrence Berkeley National Lable radiation

pp collisions

Dynamical grooming: z_g, θ_g, k_T Jet angularities: λ_{β}

 D^0 -tagged jets: z_g, θ_g

Dead cone

James Mulligan, Lawrence Berkeley National Lab

Leticia Cunqueiro Mendez Thurs July 30, 09:30

Datasets:

 $\sqrt{s} = 5.02 \text{ TeV}$ $\mathscr{L}_{int} = 18.0 \text{ nb}^{-1}$

 $\sqrt{s} = 13 \text{ TeV}$ $\mathscr{L}_{\text{int}} = 22.5 \text{ nb}^{-1}$

Unfolded distributions

ICHEP 2020

Dynamical Grooming proton-proton collisions

James Mulligan, Lawrence Berkeley National Lab

New Preliminary

Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk PRD 101 (2020) 034004

Jet angularities proton-proton collisions

Measurements for multiple R, β systematically \longrightarrow test pQCD predictions

 $\lambda_{\beta}^{\kappa} \equiv \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right)^{\kappa} \left(\frac{\Delta R_{jet,i}}{R} \right)^{\beta}$

Reasonably well-described by PYTHIA

ICHEP 2020

Pb-Pb collisions

Soft Drop: z_g, θ_g

James Mulligan, Lawrence Berkeley National Lab

Dataset: $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ $\mathscr{L}_{\rm int} = 0.12 \text{ nb}^{-1}$

Unfolded distributions

Groomed jet substructure in Pb-Pb Groomed jet momentum fraction, z_{o}

Modification of splitting function? Coherent vs. incoherent energy loss?

Previous measurements: Slight suppression?

Never unfolded for detector effects and background fluctuations in heavy-ion collisions

ICHEP 2020

$p_{\mathrm{T,sublead}}$ $p_{\rm T,lead} + p_{\rm T,sublead}$

Never measured in heavy-ion collisions

James Mulligan, Lawrence Berkeley National Lab

ICHEP 2020

Identifying groomed jet splittings in Pb-Pb

ongs in ent

y at large angle

Identifying groomed jet splittings in Pb-Pb

Results – Soft Drop z_g, θ_g **Pb-Pb 0-10%**

JETSCAPE

1903.07706

Multi-stage energy loss MATTER+LBT

Caucal et al. JHEP 10 (2019) 273

pQCD parton shower, vacuum-like + medium-induced emissions

Chien, Vitev PRL 119 (2017) 112301

Soft Collinear Effective Theory

Qin et al. PLB 781 (2018) 423 Higher-Twist, coherent energy loss

Pablos et al. JHEP (2020) 044

Hybrid model based on AdS/CFT

Yuan et al. 1907.12541

Two approaches:

(1) Modification of q/g fractions med q/g fractions from: Ringer et al. PRL 122 (2019)

(2) \hat{q} broadening

James Mulligan, Lawrence Berkeley National Lab

ICHEP 2020

Results – Soft Drop z_g, θ_g **Pb-Pb 0-10%**

Fully corrected for background and detector effects

James Mulligan, Lawrence Berkeley National Lab

ICHEP 2020

Results – Soft Drop z_g, θ_g **Pb-Pb 0-10%**

Fully corrected for background and detector effects

Data seem to favor incoherent energy loss and/or large q/g suppression

James Mulligan, Lawrence Berkeley National Lab

Inclusive jet cross-sections proton-proton collisions

PRC 101 034911 (2020)

POWHEG+Pythia

Aliolo et al. JHEP 43 (2010), JHEP 4 (2011)

100 $p_{_{\mathrm{T,jet}}} \, (\mathrm{GeV}/c)$

Sjöstrand et al. JHEP05 (2006) 026, CPC 178 (2008) 852

Theoretical approaches

Fixed-order calculations: NLO, NNLO

Resummed calculations: e.g. $(\alpha_{s} \ln 1/R^{2})^{n}$

Parton showers

NNLO contributions are significant

Currie, Glover, Pires PRL 118 072002 (2017) *Czakon et al. JHEP 262 (2019)*

NLL resummations are significant

Liu, Moch, Ringer PRL 119 (2017) 212001

See also CMS 2005.05159 (2020)

Inclusive jet cross-sections **Modification in Pb-Pb**

PRC 101 034911 (2020)

Suppression of jet yields in heavy-ion collisions relative to scaled pp collisions

Inclusive jet cross-sections Modification in Pb-Pb

Exploring new methods: Machine Learning based background subtraction

Caution: Introduces large model-dependence

James Mulligan, Lawrence Berkeley National Lab

Suppression of jet yields in heavy-ion collisions relative to scaled pp collisions

PRC 101 034911 (2020)

Semi-inclusive hadron-jet correlations

Well-suited to statistical background subtraction procedure in heavy-ion collisions Allows low- $p_{\rm T}$, large-*R* measurements

James Mulligan, Lawrence Berkeley National Lab

ALICE JHEP 2015 9 (2015) 170 STAR PRC 96 (2017) 024905

Measure semi-inclusive yield of jets recoiling from a trigger hadron:

d ² N _{jet} ^{AA}		(1	$d^2\sigma^{AA \rightarrow h+jet+X}$	
$\mathrm{d}p_{\mathrm{T,jet}}^{\mathrm{ch}}\mathrm{d}\eta_{\mathrm{jet}}$	$p_{T,trig} \in TT$	$\sqrt{\sigma^{\mathrm{AA} ightarrow \mathrm{h} + \mathrm{X}}}$	$dp_{T,jet}^{ch}d\eta_{jet}$	

Semi-inclusive hadron-jet correlations

James Mulligan, Lawrence Berkeley National Lab

ALICE JHEP 2015 9 (2015) 170

Semi-inclusive hadron-jet correlations 0-10% Pb-Pb

First fully-corrected hadron-jet $\Delta \phi$ distibution

Two observations:

Suppression of Pb-Pb yields relative to PYTHIA

Narrowing of $\Delta \varphi$ distribution towards $\Delta \varphi = \pi$

Role of radiative corrections? Zakharov, 2003.10182

James Mulligan, Lawrence Berkeley National Lab

Semi-inclusive hadron-jet correlations High-multiplicity proton-proton collisions

Significant modification of $\Delta \phi$ distributions in High-Multiplicity (HM) compared to Minimum Bias (MB)

Similar effect seen in PYTHIA — what is its origin?

James Mulligan, Lawrence Berkeley National Lab

ICHEP 2020

Semi-inclusive hadron-jet correlations High-multiplicity proton-proton collisions

Significant modification of $\Delta \phi$ distributions in High-Multiplicity (HM) compared to Minimum Bias (MB)

Similar effect seen in PYTHIA — what is its origin?

James Mulligan, Lawrence Berkeley National Lab

HM trigger constructed from Five any generation of the forward scintillators: VOA + VOA $5 < \frac{VOA + VOA}{\langle VOA + VOC \rangle} < 9$

Semi-inclusive hadron-jet correlations High-multiplicity proton-proton collisions

Significant modification of $\Delta \varphi$ distirbutions in High-Multiplicity (HM) compared to Minimum Bias (MB)

HM trigger induces forward-backward rapidity bias for recoil jets

High-multiplicity requirement biases towards multi-jet topologies

Summary

ALICE has a rich QCD jet program in both pp and Pb-Pb collisions

Jet substructure measurements

A variety of groomed and ungroomed observables in pp collisions

Inclusive and semi-inclusive measurements

And more not covered!

LHC Run 3 will open new jet possibilities: Heavy-flavor, differential measurements, correlations, ...

James Mulligan, Lawrence Berkeley National Lab

First fully corrected measurements of Soft Drop z_g, θ_g in heavy-ion collisions

Inclusive cross-sections test pQCD calculations and constrain jet quenching models Semi-inclusive techniques allow low- $p_{\rm T}$ measurements to probe jet acoplanarity

ICHEP 2020

Soft Drop — D^0 -tagged jets proton-proton collisions

 D^0 -tagged jet: A jet containing a prompt D^0

James Mulligan, Lawrence Berkeley National Lab

ALICE-PUBLIC-2020-002

Larkoski, Marzani, Soyez, Thaler 1402.2657 Larkoski, Marzani, Thaler 1502.01719

James Mulligan, Lawrence Berkeley National Lab

No significant modification of D^0 -tagged compared to inclusive

Dynamical Grooming

Identify splitting in C/A tree as the **maximum** of a particular grooming condition:

 $z_i(1-z_i)p_{T,i}\theta_i^a$

a	$\rightarrow 0$
a	= 1
a	= 2

hardest z hardest $k_T(k_T Drop)$ smallest *t_f* (timeDrop)

First measurement of Dynamical Grooming Well described by PYTHIA

ALI-PREL-352108

James Mulligan, Lawrence Berkeley National Lab

New Preliminary

Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk PRD 101 (2020) 034004

Similar to Soft Drop — except grooming condition varies jet-by-jet

James Mulligan, Lawrence Berkeley National Lab

ICHEP 2020

