

9 9 9 9

Quarkonia and open heavy flavor production in pA collisions

Jiayin Sun on behalf of LHCb collaboration University of Cagliari

ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

 D^0 : LHCb-CONF-2019-004 (8.16 TeV)

JHEP 10 (2017) 090 (5.02 TeV)

 Λ_c^+ : JHEP 02 (2019) 102 (5.02 TeV)

Recent open HF and quarkonia results

• Results in collider mode

- Open heavy flavor in *p*Pb collisions
 - Double charm pair production in *p*Pb collisions at 8.16 TeV arXiv:2007.06945
 - Prompt D^0 and Λ_c^+ production in *p*Pb collisions
 - B^+ , B^0 and Λ_b^0 production in *p*Pb collisions at 8.16 TeV
- Quarkonium in *p*Pb collisions PRD99 052011 (2019)
 - J/ψ production in *p*Pb collisions at 8.16 TeV PLB 774 (2017) 159
 - Upsilon $\Upsilon(nS)$ production in *p*Pb collisions at 8.16 TeV JHEP 11 (2018) 194
- Results in fixed target mode
 - Charm production in pHe and pAr at 87, 110 GeV $_{PRL 122 (2019) 132002}$

07/30/2020

ICHEP2020

Heavy flavor in *p*Pb collisions

10²

- Heavy flavor states are sensitive probes to study the properties of the QGP created in AA collision. 1.4
 - Produced in the early stage of the collisions
 - Strong interaction with the medium
 - Quarkonium states sequential melting
 - Baryon/meson ratio in charm and bottom sectors probes hadronisation
- Heavy flavor in pA collisions provide baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.
- LHCb well suited for such measurements:
 - Heavy flavor measurement down to $p_{\rm T}$ close to 0
 - Separation of prompt and *b* decay components
- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state ٠

1.2

0.8

0.6 0.4

0.2F

0

 R_{AA}

07/30/2020

arXiv:1802.05927

10

p_ (GeV/c)

LHCb pPb datasets

- Rapidity Coverage
 - *y*^{*}: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

•
$$\sqrt{s_{NN}} = 5.02 \text{ TeV} (2013)$$

• *p*Pb (1.06 nb⁻¹) + Pb*p* (0.52 nb⁻¹)

•
$$\sqrt{s_{NN}} = 8.16 \text{ TeV} (2016)$$

• *p*Pb (13.6 nb⁻¹) + Pbp (21.8 nb⁻¹)

Double charm production in pPb at 8.16 TeV

• Single Parton Scattering vs. Double Parton Scattering

- DPS is predicted to be enhanced in heavy ion collisions
- Like-Sign (D^0D^0) :
 - Expect DPS contribution
 - Uncorrelated if no parton correlation
- Opposite-sign $(D^0\overline{D}^0)$:
 - Charm hadrons formed from $c\bar{c}$ via SPS

arXiv:2007.06945

Double charm pair correlations in *p*Pb

- double charm hadron invariant mass $m_{D_1D_2}$:
 - Hints of difference between like-sign and opposite-sign pairs
 - Opposite-sign pairs consistent with Pythia8
- azimuthal angle between the charm hadron pair $\Delta \phi(DD)$:
 - Difference in like-sign and opposite-sign pairs
 - Near side peak at $\Delta \phi \sim 0$ for opposite-sign pairs
 - Like-sign pairs consistent with flat distribution

Double charm pair production in *p*Pb $\sigma_{DPS}^{AB} = \frac{\sigma^A \sigma^B}{\sigma_{eff}}$

- like-sign/opposite-sign ratio enhanced in *p*Pb compared to *pp*
- DPS effective cross-section $\sigma_{eff, pPb}$ compatible with extrapolation from $pp \sim 0.9b$
 - DPS enhanced by a factor of 3 in pPb compared to pp
- Smaller $\sigma_{\text{eff, }p\text{Pb}}$ for $J/\psi D$ compared to DD pairs
- $\sigma_{\text{eff, }p\text{Pb}}$ in *p*Pb > Pb*p*: indication of enhanced DPS production in Pb*p* compared to *p*Pb

Prompt D^0 measurement in pPb at 8.16 TeV

Events / (3 MeV/c²

Events / 0.2

20

10

50 F

20

10

1800

LHCb preliminary $p Pb \sqrt{s_{NN}} = 8.16 TeV$

Background

LHCb preliminary $p Pb \sqrt{s_{NN}} = 8.16 TeV$

 $D^0 + \overline{D}^0$ Forward

🔶 Data Δ11 Prompt

FromB

1850

 $D^0 + \overline{D}^0$ Forward + Data — All $\dots D^0 \rightarrow K\pi$

1900

 $M(K\pi)$ [MeV/c²

- $D^0 \rightarrow K^- + \pi^+$
- Separation of prompt and from-*b* components using impact parameter
- Forward/backward ratio $R_{\rm FB}$ increases with increasing $p_{\rm T}$
 - Lower $p_{\rm T}$: consistent with 5.02 TeV results and nPDF
 - Higher $p_{\rm T}$: above nPDF expectation
- $R_{\rm FB}$ decreases with increasing rapidity
 - Consistent with nPDF and 5.02 TeV measurement

Prompt D^0 and Λ_c^+ measurements in *p*Pb at 5.02 TeV

- pp reference directly measured by LHCb
- R_{pPb} suppressed at forward rapidity
- R_{pPb} closer to 1 at backward rapidity
- Measurements consistent with models with nPDF, CGC
- Results constrain nPDFs in low x region

- Sensitive to charm hadronisation mechanisms
- Model based on measured *pp* cross-section
- nPDF uncertainty mostly cancel
- Consistent with LHCb *pp* results ~0.3
- Lower than ALICE points in midrapidity for both *pp* and *p*Pb

ICHEP2020

b-hadron production in *p*Pb at 8.16 TeV B^+ nuclear modification factor

ICHEP2020

b-hadron production in *p*Pb at 8.16 TeV Production cross-section ratio

PRD99 052011 (2019)

- $R_{\Lambda_b^0/B^0}$
 - ~0.4, no strong rapidity dependence
 - Similar values observed in LHCb *pp* measurement JHEP 08 (2014) 143
 - Decreases with $p_{\rm T}$ when $p_{\rm T} > 5 \text{ GeV}/c$

Prompt J/ψ at 8.16 TeV nuclear modification factor in *p*Pb

- $I/\psi \rightarrow \mu^+\mu^-$
- Prompt and from- $b I/\psi$ separated: the pseudo proper decay time
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- **Backward rapidity**: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs ٠ at low x PRL 121,052004(2018)
- Results constrain nPDFs in low x down to $x \sim 7 \times 10^{-6}$

LHC

 $3.5 \le v^* \le 4.0$ background

3050

3000

200 Candidate

150

100

(0.15 ps)

Candidate

10

 $\sqrt{s_{NN}}$ =8.16 TeV: pPb

 3100 3150 3200 3100 ${}^{MeV/c^2]}$

 $6 < p_{m} < 7 \text{ GeV}/c$ $3.5 < y^* < 4.0$

LHCb $\sqrt{s_{NN}}$ =8.16 TeV: pPb

$\Upsilon(nS)$ in *p*Pb collisions at 8.16 TeV

- $\Upsilon(nS)$ sequential suppression observed in PbPb collisions
- Important to understand CNM effects in *p*Pb collisions
- New differential analysis using large 2016 *p*Pb data
- Nice $\Upsilon(3S)$ signals in forward and backward configurations

Samples	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
p P b	2705 ± 87	584 ± 49	262 ± 44
$\mathrm{Pb}p$	3072 ± 82	679 ± 54	159 ± 39

 $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ **Forward rapidity**: suppression for both states, compatible with nPDFs **Backward rapidity**: $\Upsilon(2S)$ more suppressed than $\Upsilon(1S)$, consistent with nPDFs+comovers calculation

07/30/2020

$\Upsilon(nS)/\Upsilon(1S)$ relative suppression

$$\Re_{(p\mathrm{Pb}|\mathrm{Pb}p)/pp}^{\Upsilon(nS)/\Upsilon(1S)} = \frac{R(\Upsilon(nS))_{p\mathrm{Pb}|\mathrm{Pb}p}}{R(\Upsilon(nS))_{pp}} \qquad R(\Upsilon(nS)) = \frac{[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*](\Upsilon(nS))}{[\mathrm{d}^2\sigma/\mathrm{d}p_{\mathrm{T}}dy^*](\Upsilon(1S))}$$

- Double ratio of $\Upsilon(nS)/\Upsilon(1S)$ in *p*Pb and *pp*
- $\Upsilon(3S)$ more suppressed than $\Upsilon(2S)$ in the backward rapidity
- Suggests final state effects...
- Agrees with predictions of "comovers" model
 - Interaction with particles close in phase space dissociates the bound states

Fixed target physics

- LHCb THCp
- JINST 9 (2014) P12005
- The System for Measuring Overlap with Gas (SMOG) allows a small amount of noble gas injection inside the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions (He, Ne, Ar,... ~ 2×10^7 mbar)
- $\sqrt{s_{NN}} = 69-110$ GeV between 20 GeV (SPS) and 200 GeV (RHIC)
- $-2.8 < y^* < 0.2$
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

Fixed target physics

LHCb ГНСр

JINST 9 (2014) P12005

- The System for Measuring Overlap with Gas (SMOG) allows a small amount of noble gas injection inside the LHC beam close to the interaction point
- Allows *p*-gas and ion-gas collisions (He, Ne, Ar,... ~ 2×10^7 mbar)
- $\sqrt{s_{NN}} = 69-110$ GeV between 20 GeV (SPS) and 200 GeV (RHIC)
- $-2.8 < y^* < 0.2$
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon

Charm production in fixed-target pA collision

- J/ψ and D^0 inclusive cross-section in *p*He collisions at 86.6 GeV
- First determination of $c\bar{c}$ cross-section at this energy scale
- Cross-section measurements agree with previous results and theoretical calculations

Charm production in fixed-target pA collision

- Differential cross-section (*p*He @ 86.6 GeV), differential yields (*p*Ar @ 110.4 GeV)
- Reasonable agreement with Helac-Onia predictions in rapidity shape
- -2.53<y*<-1.73 → 0.17<x<0.37
- No evidence of strong intrinsic charm contribution observed

Models:

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

19

Upcoming measurements in pPb at 8.16 TeV

Conclusions

- Open heavy flavor hadrons in *p*Pb collisions at 5.02 TeV and 8.16 TeV
 - Prompt double-charm hadron production: **DPS enhanced by a factor of 3 compared to** *pp*.
 - Precise prompt D^0 meson measurement down to zero $p_{\rm T}$. Relative suppression in the forward rapidity compared to backward rapidity observed.
 - **Prompt** Λ_c^+/D^0 ratio consistent with theoretical calculations and *pp* results
 - *b*-hadrons: **smaller relative suppression** in the forward rapidity than D^0 meson at low $p_{\rm T}$.
 - First direct measurement of Λ_b^0 baryon in heavy ion collisions. Λ_b^0/B^0 ratio ~ 0.4
- Production of quarkonia in *p*Pb collisions at 8.16 TeV
 - J/ψ : relative suppression similar to open heavy flavor results
 - $\Upsilon(nS)$: relative suppression of $\Upsilon(nS)$ states observed in *p*Pb
- Fixed-target mode (SMOG)
 - Charm production: no evidence of strong intrinsic charm contribution
- Upcoming results:
 - Open charm hadrons and χ_c production in *p*Pb data at 8.16TeV

backup

LHCb heavy ion collision modes

ICHEP2020

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution ~ $20 \ \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% 1\%$ (5-200 GeV/c)
- RICH
 - K/ π /p separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

