

$\chi_{c1}(3872)$ production in pp with particle multiplicity

Andrii Usachov on behalf of the LHCb collaboration

Intro: charmonium spectroscopy

- Well described by potential models
- More precise studies from lattice QCD

^{*} see talk by Zhiyu Xiang for LHCb results on conventional quarkonia

Intro: exotic hadron spectroscopy

 Exotic hadron candidates in charmonium region: experimentally observed states that don't fit into charmonium picture

=>more than 20 charmonium-like states observed

* for more results on exotic states see talk by Daniel Johnson

Possible interpretations

$\chi_{c1}(3872)$ or former X(3872)

• Firstly observed in $J/\psi\pi\pi$ spectrum by Belle in 2003 PRL 91, 262001

- Followed by measurements at BaBar, CDF, and LHC experiments
 => exotic hadron candidate
- Very narrow (unlikely to many other exotic states)
 => disfavors charmonium interpretation
- Close to DD^* threshold $M_{\chi_{c1}(3872)} (M_{D^0} + M_{\overline{D}^{*0}}) = 0.01 \pm 0.27 \, \mathrm{MeV}/c^2$
 - => possible interpretation: weakly bound state hadron molecule * other models: compact tetraquark, mixed state, *ccg* hybrid, etc.
- Nature of $\chi_{c1}(3872)$ to be understood

LHCb contribution: spectroscopy and decays

• $I^{PC} = 1^{++}$ established by LHCb [PRL 110, 222001] [PRD 92, 011102]

- Precise line-shape measurement (new) <u>arXiv:2005.13419</u>
 - * for more details see talk by Daniel Johnson
- Measurements/searches of $\chi_{c1}(3872)$ decays. Particularly, evidence of $X(3872) \rightarrow \psi(2S)\gamma$ decay Nucl.Phys. B886, 665-680

$$\frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 \quad \textbf{>} \text{ rejects pure molecular model}$$

• Study/discoveries of b-hadron decays to $\chi_{c1}(3872)$

* for recent results on b-hadron decays to charmonia see talk by Peilian Li

$\chi_{c1}(3872)$ prompt production

First prompt production measurement in pp at LHCb <u>EPJC 72, 1972</u>

$$\sigma(pp \to X(3872) + \text{anything}) \, \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) = 5.4 \pm 1.3 \, (\text{stat}) \pm 0.8 \, (\text{syst}) \, \text{nb}$$

 $at \, \sqrt{s} = 7 \, \text{TeV}$

- => Differential production cross-section to be measured
- Recent prompt production measurement by ATLAS <u>JHEP 01 (2017) 117</u>

=> Prediction: $\chi_{c1}(3872)$ modelled as a mixture of $\chi_{c1}(2P)$ and DD^* molecule arXiv:1304.6710

$\chi_{c1}(3872)$ production in-medium

- Nature of $\chi_{c1}(3872)$ can be studied by exploring in-medium effects:
 - Dependence on event multiplicity in pp collisions (this talk)
 - Nuclear modification factors in heavy-ion or pA collisions

- Promptly produced quark pairs can dissociate due to interactions with surrounding medium
 - * for heavy-ion results see talks by Guilia Manca and Jiayin Sun

- In-medium effects expected to be enhanced if $\chi_{c1}(3872)$ has large radius compared to charmonium system
 - *weakly bound molecular state is expected to have radius about 7fm
 - => powerful test when comparing the effects wrt to ones observed for charmonium states, e.g. $\psi(2S)$

Measurement of $\chi_{c1}(3872)$ production in pp with particle multiplicity

LHCb-CONF-2019-005

LHCb-CONF-2019-005 November 13, 2019

Multiplicity-dependent modification of $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions at $\sqrt{s}=8$ TeV

LHCb detector

IJMPA 30, 1530022 JINST 3, S08005

- Single-arm spectrometer designed for beauty and charm physics in forward region
- Large heavy quarks production cross-section compared to B-factories

- Single-arm spectrometer designed for beauty and charm physics in forward region
- Large heavy quarks production cross-section compare to B-factories

- Precise vertex reconstruction with VELO
- Powerful charged hadrons ID by RICH detectors

LHCb detector

- Coverage complementary to ALICE, ATLAS and CMS in $p_{
 m T}$ and η
- Comparable b-quark production cross-section in much smaller solid angle
- Large trigger bandwidth for b-physics
- Limited instantaneous luminosity

Data analysis

- Data sample: $2.0 \ fb^{-1}$ collected at $\sqrt{s} = 8 \ TeV$
- Signal channel: $\chi_{c1}(3872) \rightarrow (J/\psi \rightarrow \mu\mu)(\rho \rightarrow \pi\pi)$
- $\psi(2S) \rightarrow (J/\psi \rightarrow \mu\mu)\pi\pi$ used as normalization
- Data selection:

 $J/\psi \rightarrow \mu\mu$ candidates are combined with two pions identified by RICH

- Kinematic refit constraints
 - $M(\mu\mu)$ mass to J/ψ mass from PDG
 - to have same origin vertex for all four tracks

Prompt and b-decays components

Separated using pseudo-proper lifetime t_z

$$t_z = \frac{(z_{\text{decay}} - z_{\text{PV}})M}{p_z}$$

- Simultaneous fit to invariant mass and t_z performed
- Ratio of $\chi_{c1}(3872)/\psi(2S)$ extracted in bins of N_{tracks}^{VELO} proxy to event multiplicity

Prompt production fraction

LHCb-CONF-2019-005

• Defined as
$$f_{prompt} = \frac{N_{prompt}}{N_{prompt} + N_{b-decays}}$$
 - studied in bins of N_{tracks}^{VELO}

- Obvious decreasing trend for both $\chi_{c1}(3872)$ and $\psi(2S)$
 - => b-production events has naturally larger multiplicity than prompt
 - => prompt production can be affected by in-medium effects (unlikely to affect production in b-decays)

Relative production cross-section

LHCb-CONF-2019-005

Obtained as

$$\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \frac{\mathcal{B}[\chi_{c1}(3872) \to J/\psi \, \pi^+ \pi^-]}{\mathcal{B}[\psi(2S) \to J/\psi \, \pi^+ \pi^-]} = \frac{N_{\chi_{c1}(3872)} \, f_{\text{prompt}}^{\chi_{c1}(3872)}}{N_{\psi(2S)} \, f_{\text{prompt}}^{\psi(2S)}} \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi_{c1}(3872)}} \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\psi(2S)}}$$

- systematics dominated, correlated between the bins
- would benefit from differential prompt production measurement

Prompt: stronger suppression of $\chi_{c1}(3872)$ relative to $\psi(2S)$ at high multiplicity => expected if $\chi_{c1}(3872)$ is weakly bound state (system with large radius) * the slope is found to be 2.6 σ different from zero

b-decays: no strong dependence on event multiplicity => consistent with ATLAS measurement <u>JHEP 01 (2017) 117</u>

Theory interpretation (new)

arXiv:2006.15044

- Molecule dissociates immediately: sharp dependence predicted
- Tetraquark interpretation fits better to data points
- Detector effects to be understood

Towards production measurement in pPb and Pbp

LHCB-FIGURE-2019-019

• Clear signal from $\chi_{c1}(3872)$:

- Analysis ongoing
- Complementary to other LHC measurements

Summary

- The nature of $\chi_{c1}(3872)$ is important for understanding and testing QCD
- A rich program is devoted at LHCb to study its spectroscopy, production and decays
- The measurement of the $\chi_{c1}(3872)$ production in pp with particle multiplicity has been performed
- The results show that **prompt** $\chi_{c1}(3872)$ production is **more suppressed than** $\psi(2S)$ at high event multiplicities
 - => helps to understand the nature of $\chi_{c1}(3872)$
 - => suggests that $\chi_{c1}(3872)$ is more weakly bound than $\psi(2S)$
- More production measurements to come:
 - $\chi_{c1}(3872)$ production in pPb
 - updated $\chi_{c1}(3872)$ production in pp
 - ...

Stay tuned