

Latest results on light (anti)nuclei production in Pb-Pb collisions with ALICE at the LHC

<u>Chiara Pinto¹</u> on behalf of the ALICE Collaboration

ICHEP Online Conference July 30, 2020

¹ INFN and University of Catania

DIPARTIMENTO di – FISICA e ASTRONOMIA *"Ettore Majorana"*

ALICE

- Multi-baryon states are produced in high energy hadronic collisions at the LHC
- Their production mechanism is still under debate
- Two classes of phenomenological models:
 - Statistical hadronisation
 - Coalescence

Statistical models

- Hadrons emitted from a system in statistical and chemical equilibrium
- $dN/dy \propto exp(-m/T_{chem})$

 \Rightarrow Nuclei (large m): large sensitivity to T_{chem}

- Light nuclei are produced during phase transition (as other hadrons)
- Typical binding energy of nuclei ~ few MeV (E_B ~ 2 MeV for d)

 \Rightarrow how can they survive the hadronic phase environment ($T_{chem} \sim 156 \text{ MeV}$)?

→ In Pb-Pb collisions, particle yields of light flavor hadrons are described over 9 orders of magnitude with a common chemical freeze-out temperature of $T_{\text{chem}} \approx 156 \text{ MeV}$.

Nature vol. 561, 321–330 (2018)

- If (anti)baryons are close in phase space and match the spin state, they can form a (anti)nucleus
- Coalescence parameter B_A is the key parameter

$$E_{\rm A} \frac{{\rm d}^3 N_{\rm A}}{{\rm d} p_{\rm A}^3} = B_{\rm A} \left(E_{\rm p} \frac{{\rm d}^3 N_{\rm p}}{{\rm d} p_{\rm p}^3} \right)^A \bigg|_{\overrightarrow{p}_{\rm p}} = \overrightarrow{p}_{\rm A}/A$$

- Experimental parameter tightly connected to the coalescence probability Larger $B_{\Delta} \Leftrightarrow$ Larger coalescence probability
 - Coalescence probability depends on the system size

Small distance in space (Only momentum correlations matter) \Leftrightarrow large B_{A}

Large distance in space (Both momentum and space correlations matter)

 \Leftrightarrow small B_{Δ}

- General purpose experiment
- Excellent tracking and PID capabilities over a broad momentum range
- Low material budget

→ Most suited detector at the LHC for the study of (anti)nuclei produced in HI collisions

The ALICE detector

- General purpose experiment
- Excellent tracking and PID capabilities over a broad momentum range
- Low material budget

→ Most suited detector at the LHC for the study of (anti)nuclei produced in HI collisions

Low p nuclei identification

Low p region (below 1 GeV/c) \rightarrow PID via dE/dx measurements in TPC

- Excellent PID for deuterons $\sigma_{dE/dx} \sim 6.5\%$ (in Pb-Pb collisions)
- (anti)³He well separated from the other particle species over the full momentum range

ALI-PUB-108114

Low p nuclei identification ALICE

Low p region (below 1 GeV/c) \rightarrow PID via dE/dx measurements in TPC

 $\sigma_{dE/dx} \sim 6.5\%$ (in Pb-Pb collisions) (anti)³He well separated from the other particle species over the full momentum range

Data

Total fit

-- ³H

-. ³He

 $\frac{1}{dE} / dx - \langle dE / dx \rangle_{3_L}$

 $\sigma_{\text{dE / dx}}^{\overline{^{3}\text{He}}}$

ICHEP Online Conference 30 July 2020

High p nuclei identification

<u>Higher *p* region (above 1 GeV/*c*)</u> \rightarrow PID via velocity β measurements in TOF

High p nuclei identification

<u>Higher *p* region (above 1 GeV/*c*)</u> \rightarrow PID via velocity β measurements in TOF

Light (anti)nuclei in Pb-Pb

Light (anti)nuclei in Pb-Pb

Phys.Rev.C 93 (2016) 2, 024917

- Similar behaviour observed also in ³He spectra
- Hardening with increasing centrality as seen for other light-flavour hadrons ⇒ Collective motion (radial flow)

Light (anti)nuclei in Pb-Pb

Light (anti)nuclei up to ⁴He have been measured

* released in summer 2020

Blast-Wave fit of p_T spectra

Pb-Pb @ 5.02 TeV

- Blast-Wave fit of light flavour hadrons – from π to α
- ³H and ³He p_T spectra are of the same order of magnitude
 ⇒ Considered comparable for the ratio-to-protons

- Smooth transition across different collision systems and energies
- Light nuclei production seems to depend only on multiplicity ⇒ under investigation
- Results challenge the models for A=3 nuclei

Coalescence parameters VS p_T /A

Pb-Pb @ 5.02 TeV

- Rise with increasing p_T/A (especially at higher multiplicities)
- Trend with p_T/A in Pb–Pb collisions described by hydrodynamic calculations with afterburner (Oliinychenko, PRC 99, 044907 (2019))

Coalescence parameters VS p_τ/A

• Also for B_3 observed a rise with increasing p_T/A (especially at higher multiplicities)

Pb-Pb @ 5.02 TeV

14

Coalescence parameter B₂

Continuous evolution of B_2 with multiplicity

- Smooth transition from small to large system size
- Single underlying production mechanism?

Advanced coalescence taking the size of the nucleus and the emitting source into account predicts a similar trend

The trend with multiplicity is explained as an increase in the source size *R* in coalescence models (e.g. *Scheibl, Heinz PRC 59 (1999) 1585*).

15

Coalescence parameters B₃ and B₄

- Similar trend with multiplicity observed also in B_3
- Continuous evolution of B_3 with multiplicity

Models struggle to quantitatively describe the measured B_3 (and B_4)

ICHEP Online Conference 30 July 2020

Elliptic and triangular flow ALICE

Initial space anisotropy in non-central A-A collisions

> azimuthal anisotropy of particle emission wrt symmetry plane

Particle azimuthal distribution can be espressed as a Fourier series

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n\geq 1} v_n \cos\left(n\left(\varphi - \Psi_n\right)\right)$$

$$\begin{cases} \Psi_n = n^{th} \text{ symmetry plane} \\ \varphi = \text{azimuthal angle} \\ v_n = \text{flow coefficients} \end{cases}$$

Chiara Pinto

Ø

- Mass ordering at low p_{T} , increasing trend with p_{T} and for more peripheral events
- Expectations from relativistic hydrodynamics are fulfilled

Comparison to simplified models

ICHEP Online Conference 30 July 2020

Comparison to simplified models

 Similar behaviour also for ³He flow

20

- v₂ of (anti)³He lies between Blast-Wave and naive coalescence
- Models partially describe the data – depending on centrality regions

ALICE

Comparison to more sophisticated models ²¹

- Comparison with predictions of a hybrid model based on relativistic viscous hydrodynamics (JETSCAPE 1.0) – no coalescence in the final state
- Good description of the deuteron v_2 20-30% and 30-40% collisions

Hydrodynamical simulation (iEBE-VISHNU) + Coalescence (Wenbin, PRC 98, 054905 (2018))

- Good description of the deuteron v_2 and v_3 as well as the ³He v_2 in 0-40%
- No predictions available for more peripheral collisions or SHM

- Light (anti)nuclei up to ⁴He are measured with ALICE
- Production mechanism evolves smoothly with multiplicity
- Statistical and Coalescence models describe different aspects of light (anti)nuclei production
- Experimental results challenge the models

Thank you for the attention!

Coalescence parameters VS p_T/A

p-Pb @ 8.16 TeV

pp @ 13 TeV

Coalescence parameters VS p_T/A

[Oliinychenko, PRC 99, 044907 (2019)]

(central) Pb-Pb @ 2.76 TeV

- Trend with p_T /A in Pb–Pb collisions described by hydrodynamic calculations with afterburner
- → Deuteron B₂ from the hydro + SMASH simulation (no coalescence, only collisions with experimentally known deuteron cross sections) compared to ALICE measurements in Pb-Pb at 2.76 TeV

Also p_T spectra are reproduced by the model, but p & d spectra are slightly overestimated

ALICE