

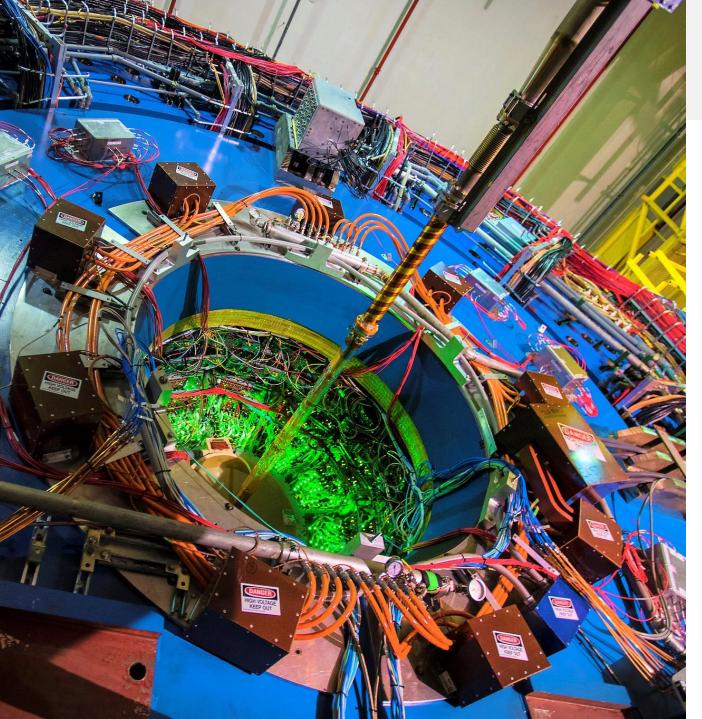
Measurements of open heavy-flavor hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV by the STAR experiment

Lukáš Kramárik, for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

30 July 2020

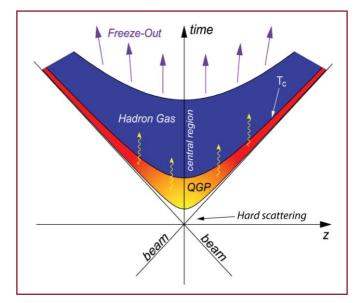
40th International Conference on High Energy Physics (ICHEP) 28 July – 6 August 2020 virtual conference

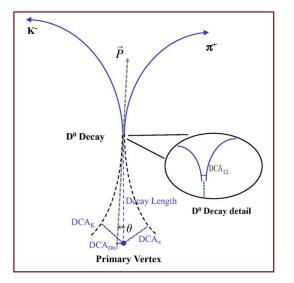


Acknowledgement

The work was also supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

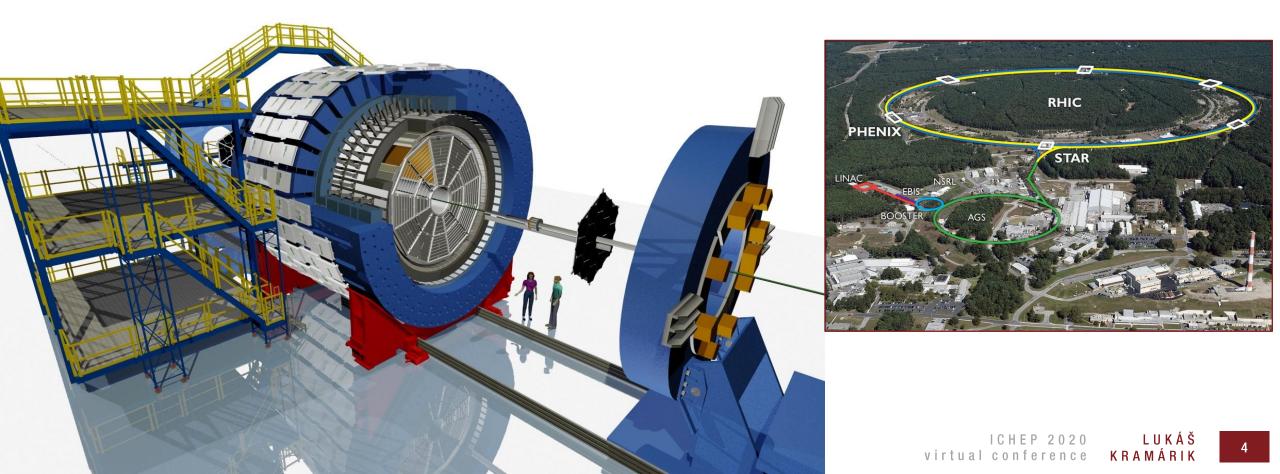
Outline


- Motivation probing quark-gluon plasma
- The Solenoid Tracker At RHIC
- Heavy flavor energy loss in Au+Au collisions
- Directed and elliptic flow of charm quarks in Au+Au collisions
- Hadronization of charm quarks in Au+Au collisions

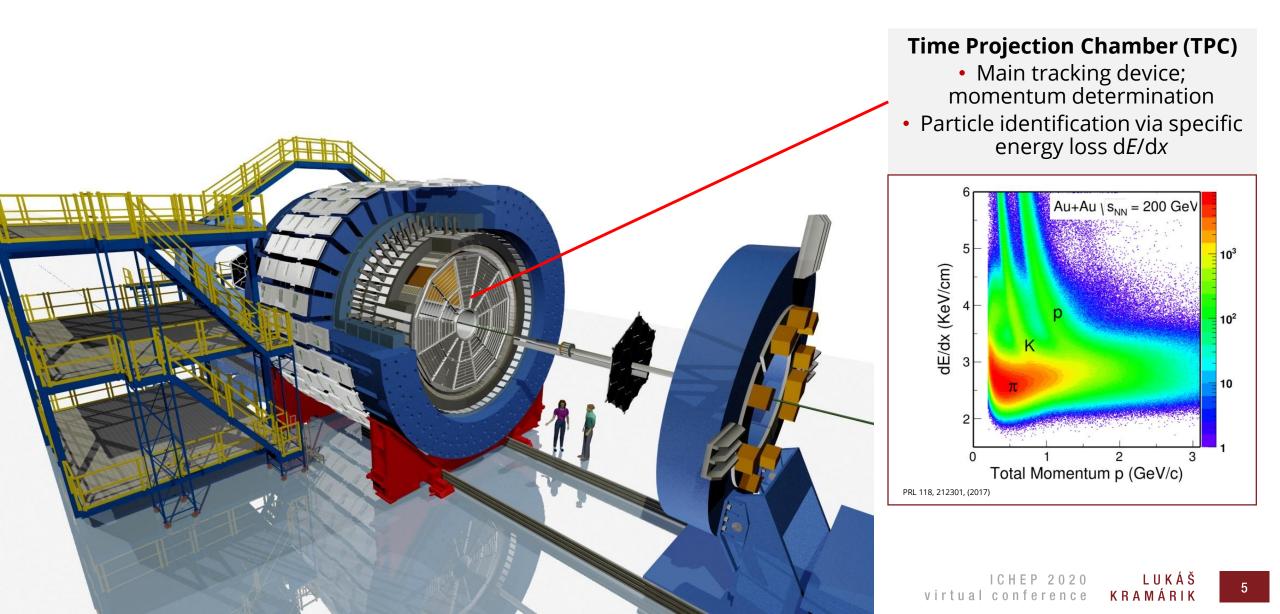


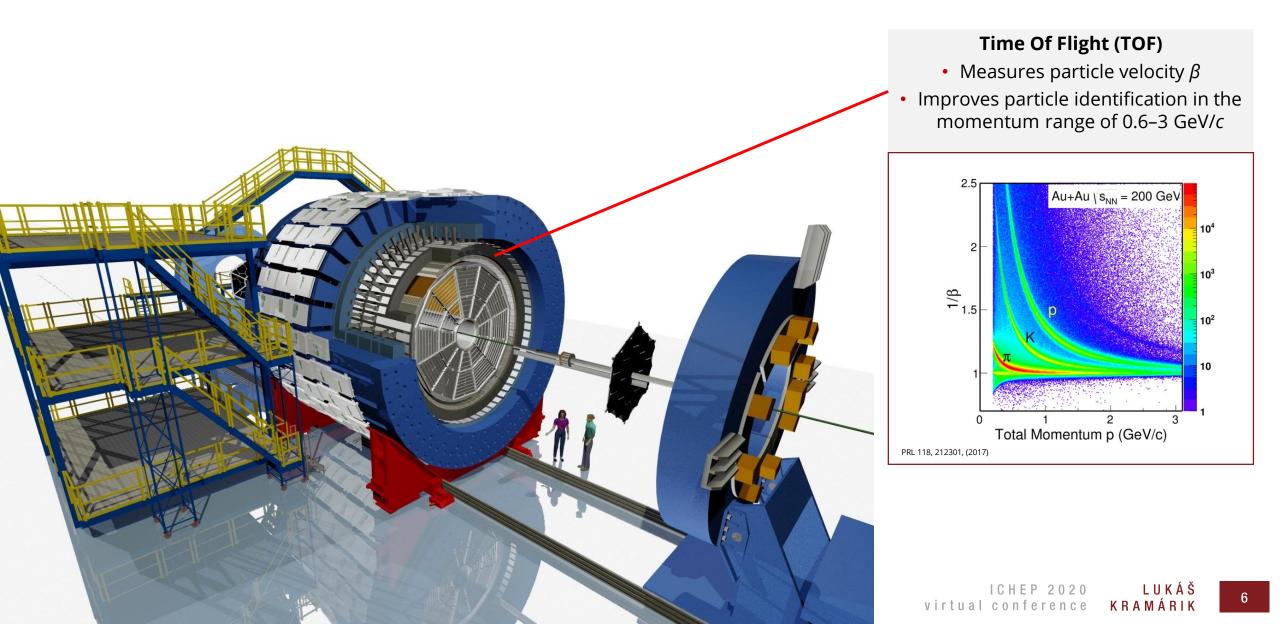
Heavy-flavor quarks as a probe of quark-gluon plasma (QGP)

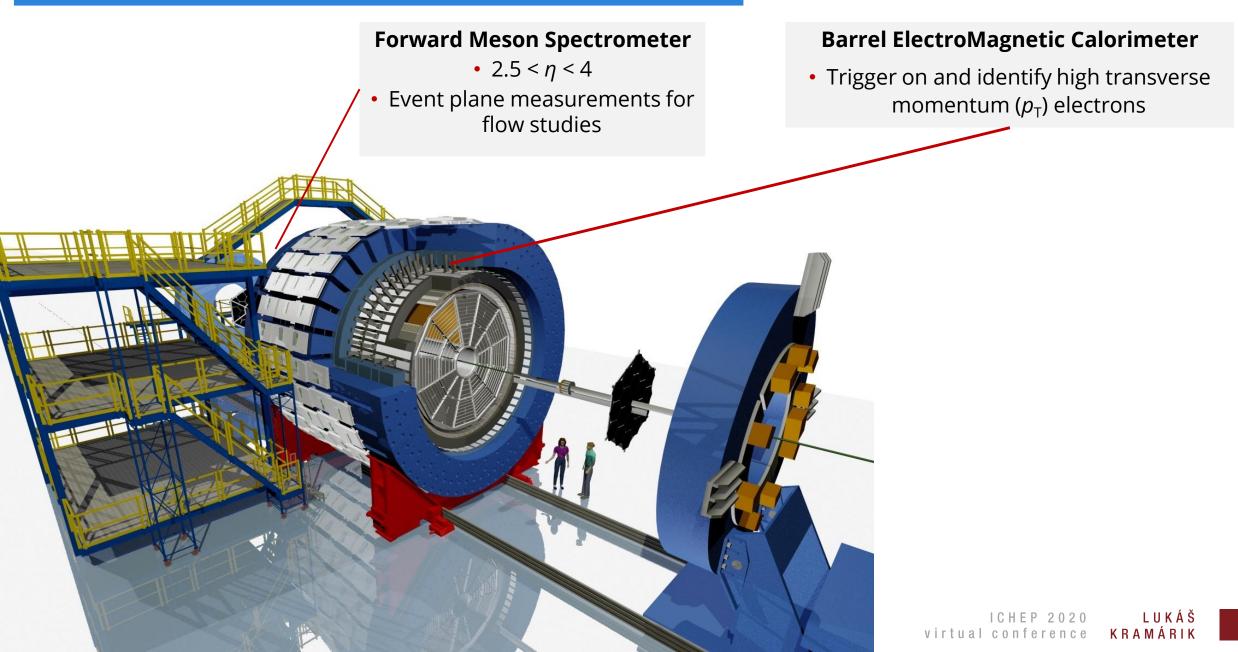
- QGP is hot and dense medium produced in **heavy-ion collisions**
- HF quarks possess large masses
 - \rightarrow they are produced primarily at the **early stages of nuclear collisions**
 - \rightarrow they experience the **whole evolution of the system including the QGP phase**
- HF hadrons allow to probe the quark mass dependence of energy loss in the QGP
- Collective behavior of heavy-flavor quarks
 - \rightarrow sensitive to the degree of thermalization in the QGP
 - $\rightarrow\,$ constrain the heavy-flavor quark diffusion coefficient

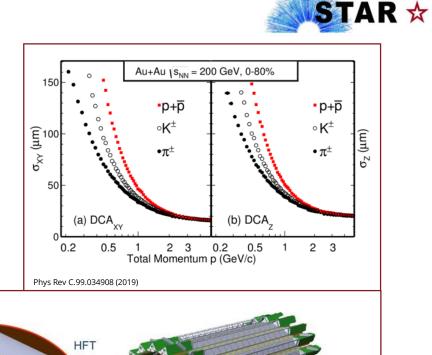


Open charm hadrons are studied via hadronic decays:


- $D^+(c\overline{d}) \rightarrow K^-\pi^+\pi^+$, branching ratio (BR) = (8.98 ± 0.28) %
- $D^{0}(c\overline{u}) \rightarrow K^{-}\pi^{+}$, $BR = (3.93 \pm 0.04) \%$
- $D_s^+(c\bar{s}) \rightarrow \Phi \pi^+$, $\Phi \rightarrow K^- K^+$, $BR = (2.27 \pm 0.08) \%$
- $\Lambda_{c}^{+}(udc) \rightarrow K^{-}\pi^{+}p$, *BR* = (6.35 ± 0.33) %


- Situated at Relativistic Heavy-Ion Collider at Brookhaven National Laboratory (BNL) in the USA
- Designed to study the strongly interacting matter
- Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field



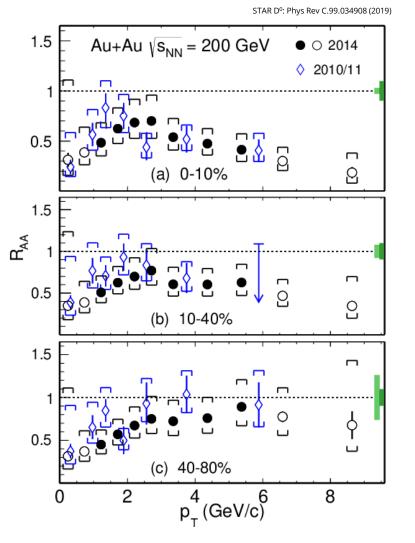


Heavy Flavor Tracker (HFT)

- Inner tracking system
- First application of MAPS in collider experiments
- Excellent **DCA_{xy} and DCA_z resolution:** ~50 µm for kaons at $p_T = 750$ MeV/*c*
- Significantly improves the signal/background for open HF reconstruction

PXL

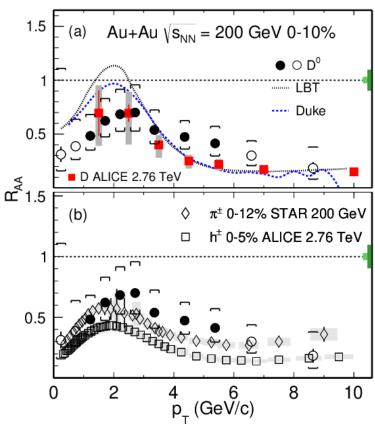
IST


Energy loss in Au+Au collisions: D⁰

• Nuclear modification factor R_{AA} :

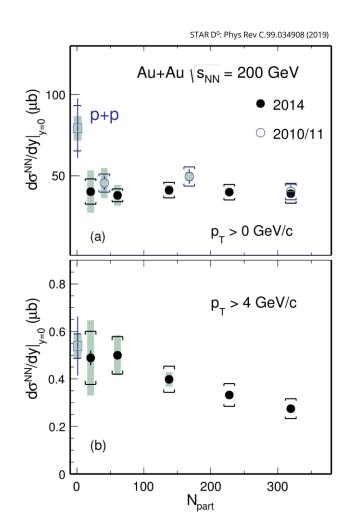
$$\mathsf{R}_{\mathsf{A}\mathsf{A}} = \frac{\mathsf{d}\mathsf{N}_{\mathsf{A}\mathsf{A}} \,/\,\mathsf{d}\mathsf{p}_{\mathsf{T}}}{\langle \mathsf{T}_{\mathsf{A}\mathsf{A}} \rangle \mathsf{d}\sigma_{\mathsf{p}\mathsf{p}} \,/\,\mathsf{d}\mathsf{p}_{\mathsf{T}}}$$

- Yields at high p_T are **greatly suppressed** in central collisions
- Suppression at high p_{T} decreases towards more peripheral collisions
- No significant centrality dependence for D^0 suppression at low p_T


• Nuclear modification factor R_{AA} :

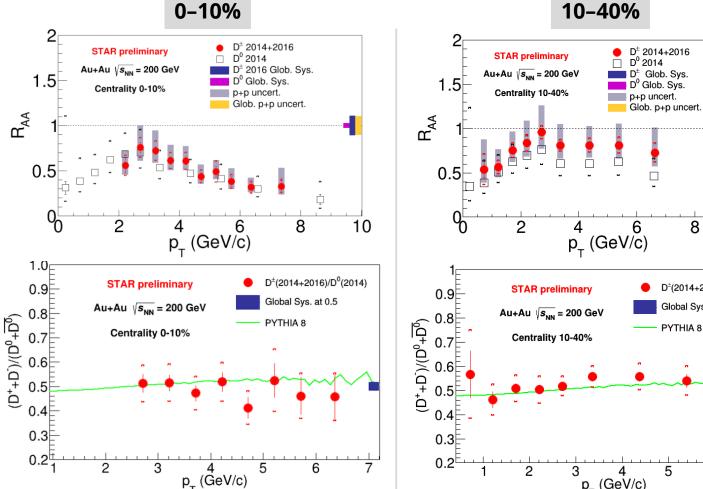
$$R_{AA} = \frac{dN_{AA} / dp_{T}}{\langle T_{AA} \rangle d\sigma_{pp} / dp_{T}}$$

- Yields at high p_T are **greatly suppressed** in central collisions
- Suppression at high $p_{\rm T}$ decreases towards more peripheral collisions
- No significant centrality dependence for D^0 suppression at low p_T
- D⁰ shows **similar suppression to light mesons** at high $p_{\rm T}$
- D⁰ R_{AA} is **comparable to that from the LHC** measurements in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
- Models that include both collisional and radiative losses are consistent with data at $p_{\rm T}$ > 3 GeV/c
- Charm quarks lose significant amount of energy when traversing through the QGP



• Nuclear modification factor R_{AA} :

$$R_{AA} = \frac{dN_{AA} / dp_{T}}{\langle T_{AA} \rangle d\sigma_{pp} / dp_{T}}$$


- Yields at high p_T are **greatly suppressed** in central collisions
- Suppression at high p_{T} decreases towards more peripheral collisions
- No significant centrality dependence for D^0 suppression at low p_T
- D⁰ shows **similar suppression to light mesons** at high $p_{\rm T}$
- D⁰ R_{AA} is **comparable to that from the LHC** measurements in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
- Models that include both collisional and radiative losses are consistent with data at p_T > 3 GeV/c
- Charm quarks lose significant amount of energy when traversing through the QGP
- $p_{\rm T}$ -integrated D⁰ cross-section is independent of centrality, and smaller than that in p+p collisions

Energy loss in Au+Au collisions: D[±]

- Similar level of suppression and centrality dependence for D[±] and D⁰ mesons
- D[±]/ D⁰ yield ratios are compatible with PYTHIA

D[±](2014+2016)/D⁰(2014) Global Sys. at 0.5 PYTHIA 8 6 7 5 p_⊤ (GeV/c)

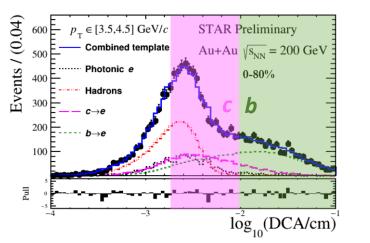
8

10

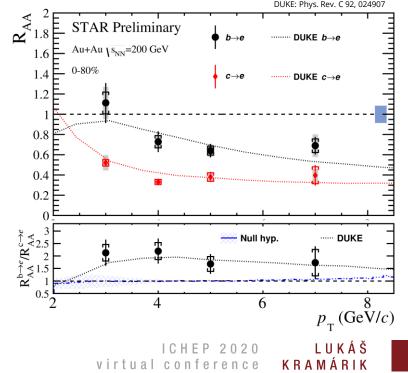
40-80% 2.5D[±] 2014+2016 STAR preliminary D⁰ 2014 2 Au+Au / S = 200 GeV D[±] Glob. Sys. D⁰ Glob. Sys. Centrality 40-80% Glob. p+p uncert. ____1.5[⊧] ⊈ þ 0.5 p+p uncert. 4 6 p_{_} (GeV/c) 2 8 10 D[±](2014+2016)/D⁰(2014) STAR preliminary 0.9 Global Sys. at 0.5 Au+Au Vs_{NN} = 200 GeV 0.8 $(D^++D^{\bar{}})/(D^0+\overline{D^0})$ PYTHIA 8 Centrality 40-80% 0.7 0.6 0.5 0.4 0.3 0.2^t 2 3 5 6 p_T (GeV/c) **ICHEP 2020** LUKÁŠ

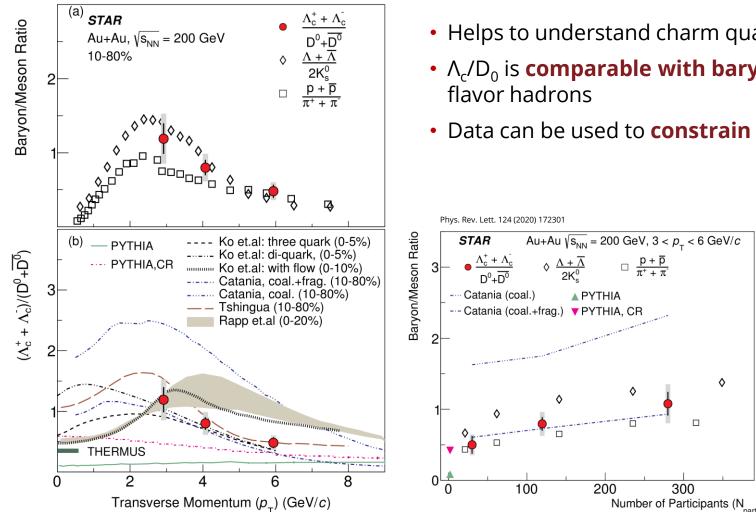
virtual conference

Poster by J. Vaněk – Thursday 13:39


STAR D⁰: Phys Rev C.99.034908 (2019)

KRAMÁRIK


Energy loss in Au+Au collisions: heavy-flavor decayed electrons


- Measurement of electrons from charm and beauty hadron decays
- Extract charm and bottom decayed **electron fractions**
 - background from photonic electrons and hadrons
 - \rightarrow template fitting to Distance of Closest Approach (DCA) distribution (enabled thanks to HFT)

- Charm-decayed electrons show suppression at high- p_{T} of $R_{AA} \sim 0.4$
- Data consistent with DUKE model prediction
- Beauty-decayed electrons suppression is smaller than charmdecayed electrons with $\geq 3\sigma$ significance
 - Evidence of mass dependence of energy loss

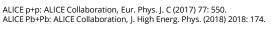
Phys. Rev. Lett. 124 (2020) 172301

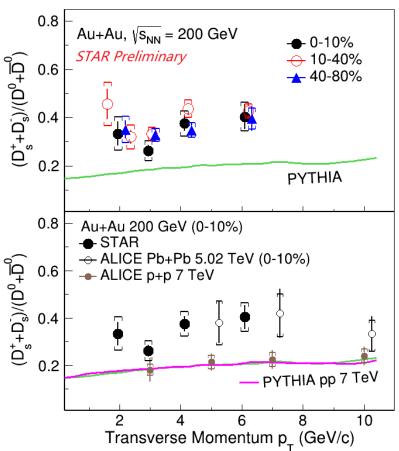
- Helps to understand charm guark hadronization
- Λ_c/D_0 is **comparable with baryon-to-meson** ratios for light and strange
- Data can be used to **constrain model calculations**

٥

300

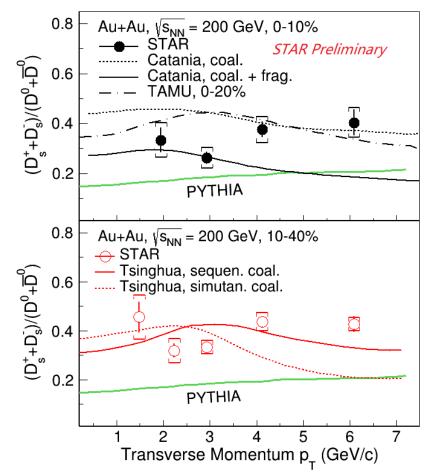
 $\Box \frac{p+\overline{p}}{\pi^++\pi^-}$




- Similar to those for light and strangeflavor hadrons
- Consistent with the Catania model calculation including both coalescence and fragmentation hadronization

D_s/D_0 yield ratio in Au+Au collisions

- D_s/D₀ yield ratio probes strangeness enhancement and coalescence of charm quarks with strange quarks in QGP
- Significantly larger than fragmentation baseline (PYTHIA p+p)
- No significant centrality dependence
- PYTHIA calculation consistent with ALICE p+p results at \sqrt{s} = 7 TeV
- STAR measurements at high $p_{\rm T}$ are consistent with ALICE Pb+Pb results at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$



D_s/D_0 yield ratio in Au+Au collisions

STAR 🛧

- D_s/D₀ yield ratio probes strangeness enhancement and coalescence of charm quarks with strange quarks in QGP
- Significantly larger than fragmentation baseline (PYTHIA p+p)
- No significant centrality dependence
- Catania model calculation with only coalescence hadronization describes data for $p_T > 4$ GeV/*c*
- Catania model calculation with both coalescence and fragmentation hadronization describes data for lower $p_{\rm T}$
- Tsinghua model with sequential coalescence hadronization qualitatively describes data
- Enhancement of D_s meson in Au+Au collisions suggests that charm quarks also participate in coalescence hadronization in the QGP

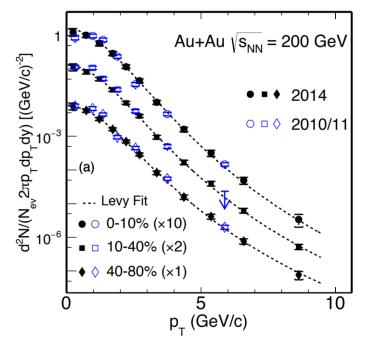
Catania: Plumari S, Minissale V, Das S K, et al., Eur. Phys. J. C (2018) 78: 348. TAMU: He M, Ralf R., In preparation. Tsinghua: Zhao J, Shi S, Xu N, Zhuang P., arXiv (2018):1805.10858.

Total charm cross section

Coll. system	Hadron	d <i>σ</i> /dy [µb]
Au+Au at 200 GeV (10-40% central)	D ⁰	41 ± 1 ± 5
	D+	18 ± 1 ± 3
	Ds	15 ± 1 ± 5
	۸ _c	78 ± 13 ± 28
	Total	152 ± 13 ± 29
p+p at 200 GeV	Total	130 ± 30 ± 26

STAR p+p: Phys Rev Lett.121.229901

D⁰:

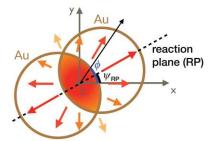

• measured down to zero $p_{\rm T}$

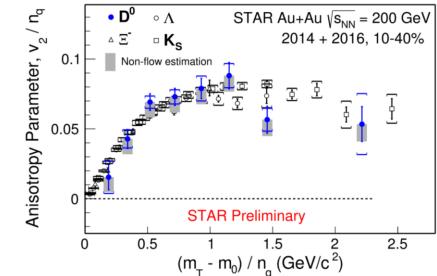
D^+ and D_s :

 Levy (power law) fits to measured spectra and extrapolate down to zero p_T

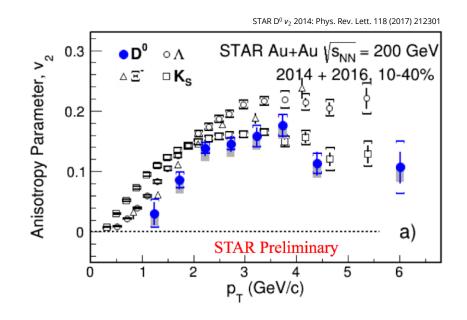
Λ_c:

- using Λ_c/D⁰ in 10-80% central collisions
- three model calculations fit to data and extrapolate down to zero p_{T} , differences are included in systematics


- The charm quark cross-section in Au+Au collisions, scaled by the number of binary nucleon-nucleon collisions, is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open-charm hadron species

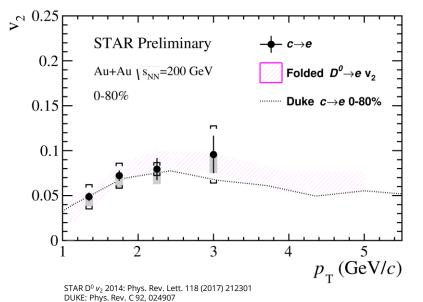

• Fourier expansion of the **particle yield** with respect to the event plane:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left[n\left(\phi - \psi_{RP}\right)\right]\right)$$


• Light flavor v₂ suggests **hydrodynamic behavior** of a strongly interacting matter

STAR D⁰ v₂ 2014: Phys. Rev. Lett. 118 (2017) 212301

• $D^0 v_2$ follows number of constituent quarks scaling \rightarrow suggesting that **charm quarks flow with the QGP**



- $p_{T} < 2 \text{ GeV/}c$: clear mass ordering of v_2
- $p_{T} > 2 \text{ GeV/c:} D^{0} v_{2}$ consistent with light mesons

Elliptic flow v_2 of heavy-flavor decayed electrons

Charm-decayed electrons

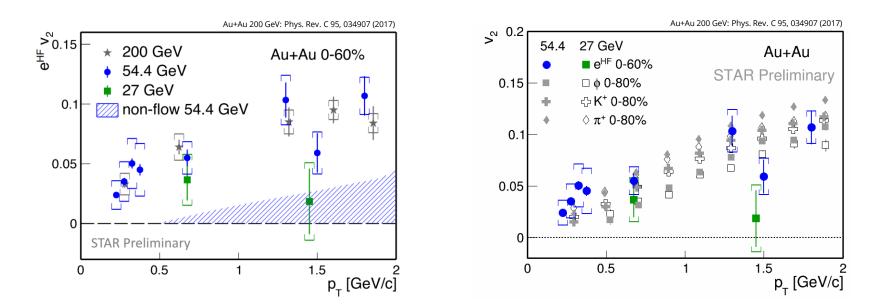
- Measured D⁰ v_2 folded to decayed electron v_2 with semi-leptonic decays simulated in EvtGen
- Charm electron v₂ consistent with folded D⁰ v₂ and DUKE model

Beauty-decayed electrons

- First observation of **non-zero bottom electron v**₂
 - TPC event plane measurement with full non-flow subtraction significant at 3.4σ
- Forward Meson Spectrometer (2.5 < η < 4) as event plane detector reduces non-flow to 0.5%

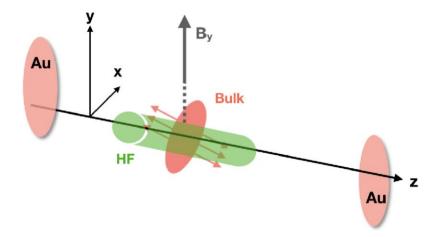
virtual conference

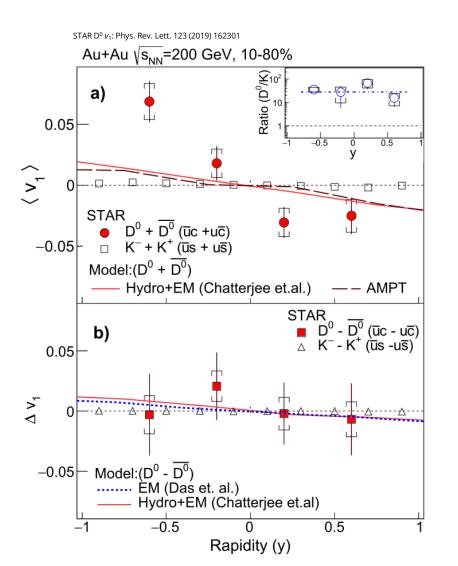
KRAMÁRIK



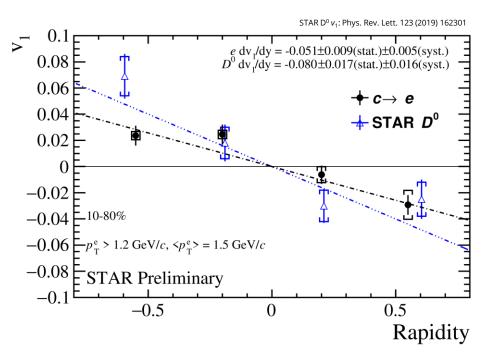
Elliptic flow v_2 of heavy-flavor decayed electron

Comparison of HF decayed electron v_2 in Au+Au collisions at $\sqrt{s_{NN}}$ = 27, 54.4 and 200 GeV

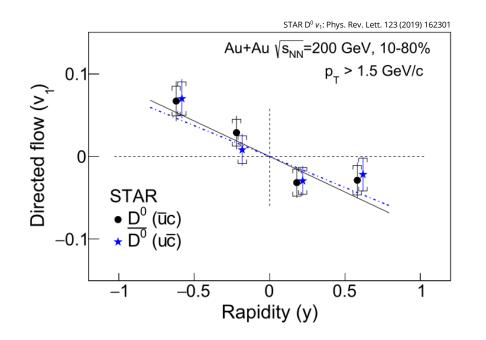

- Results in **54.4** GeV Au+Au collisions show v_2 comparable to that in **200** GeV
- Hint for lower v_2 in Au+Au collisions at **27** GeV than those at **54.4** and **200** GeV
- Comparable to light flavor meson v₂ at 54.4 GeV

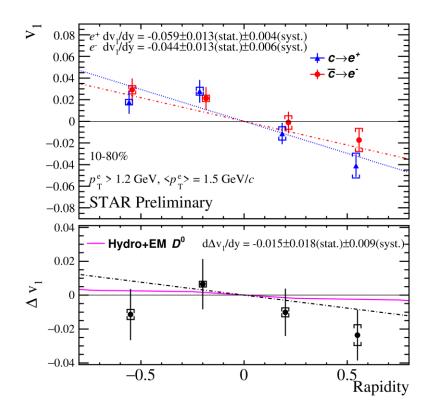

• HF quarks interact strongly with the medium in 54.4 GeV Au+Au collisions

- Important to study **initial conditions** of heavy-ion collisions
- Hydro models:
 - v₁ magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk
- Initial electromagnetic field:
 - opposite effects for c and \bar{c}
 - induce larger v_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks


- Important to study **initial conditions** of heavy-ion collisions
- Hydro models:
 - v₁ magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk
- Initial electromagnetic field:
 - opposite effects for c and \bar{c}
 - induce larger v_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks
- Measured $D^0 v_1$ slope is ~5-20 times larger than that for kaons
- Tilted source models predict the correct sign of dv₁/dy, but the v₁ magnitudes are lower than data
 - \rightarrow Help to constrain initial conditions

ICHEP 2020 LUKÁŠ virtual conference KRAMÁRIK 23


- Important to study **initial conditions** of heavy-ion collisions
- Hydro models:
 - v₁ magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk
- Initial electromagnetic field:
 - opposite effects for c and \bar{c}
 - induce larger v_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks
- Measured $D^0 v_1$ slope is ~5-20 times larger than that for kaons
- Tilted source models **predict the correct sign** of dv_1/dy , but the v_1 magnitudes are lower than data
 - \rightarrow Help to constrain initial conditions
- v₁ magnitude of charm-decayed electrons is consistent with D⁰ mesons



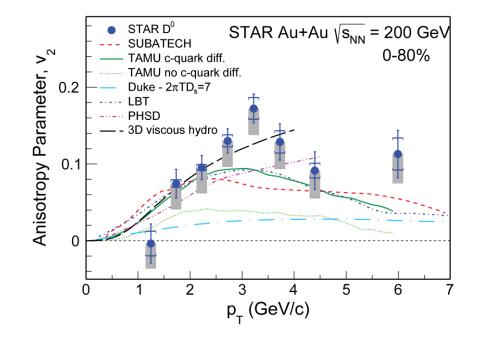
- c and $\overline{c} v_1$ magnitude probed by both charmed-decayed electrons and D⁰ mesons
 - Within the uncertainties, **no splitting due to electromagnetic field**

- D meson production is **strongly suppressed** in central Au+Au collisions compared to that in p+p collisions
 - \rightarrow strong charm-medium interactions
 - \rightarrow less suppression of beauty-decayed electrons compared to charm-decayed ones
- D⁰ meson and charm-decayed electrons exhibit similar v_2 as light flavor in Au+Au collisions
 - \rightarrow charm quarks **have gained significant flow** in the QGP
 - → charm quarks may have **achieved local thermal equilibrium**
- Directed flow v₁ of D⁰ is significantly larger than that for light hadrons
 - \rightarrow constraints for the geometric and transport parameters of the hot QCD medium
 - \rightarrow observed no c and \overline{c} splitting due to electromagnetic field within uncertainties
- Charm quarks participate in **coalescence hadronization** in the QGP
 - \rightarrow Total per-NN charm quark cross section consistent with p+p, but **charm hadrochemistry significantly modified**

Thank you for your attention

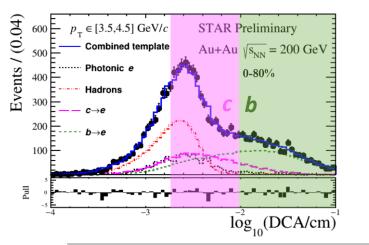
STAR at ICHEP 2020:

- Measurements of J/ψ photoproduction in ultra-peripheral collisions at RHIC
 - Jaroslav Adam, 29 July 2020 (Wednesday), 19:18
- Overview of upsilon production studies performed with the STAR experiment
 - Leszek Kosarzewski, 30 July 2020 (Thursday), 09:12
- Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at \sqrt{s} = 200 GeV with the STAR detector at RHIC
 - Rafal Sikora, 30 July 2020 (Thursday), 10:25
- Production of D⁺⁻ mesons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV at the STAR experiment
 - Jan Vaněk (poster), 30 July 2020 (Thursday), 13:39
- Study of the central exclusive production of π⁺π⁻, K⁺K⁻ and pp̄ pairs in proton-proton collisions at √s_{NN} = 510 GeV with the STAR detector at RHIC
 - Tomáš Truhlář (poster), 31 July 2020 (Friday), 13:30

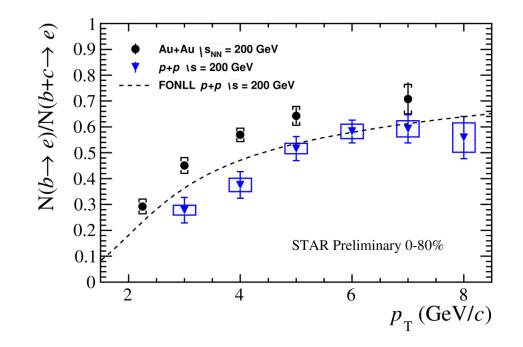

Acknowledgement

The work was supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

- SUBATECH: pQCD + hard thermal loops H. Berrehrah et al., PRC 91 054902 (2015)
- TAMU: non-perturbative T-matrix approach M. He et al., EPJ C (2016) 76: 107
- Linearized Boltzmann Transport (LBT): Jet transport model extended to heavy quarks S. Cao et al., PRC 94 014909 (2016)


- TAMU model with no charm quark diffusion and Duke model are inconsistent with data
- 3D viscous hydro calculation agrees with data, suggesting that charm quarks may have achieved thermal equilibrium
- Charm quark diffusion coefficient:

 $(2\pi T)D_{\rm s} \approx 2 - 12$


- Duke: transport properties tuned to LHC data
 S. Cao et al., PRC 92 024907 (2015)
- Parton-Hadron-String Dynamics (PHSD): Effective potential of c-quarks H. Berrehrah et al., PRC 90 051901 (2014)
- 3D viscous hydro: tuned to light hadrons L.-G. Pang et al., PRD 91 074027 (2015)

Energy loss in Au+Au collisions: heavy-flavor decayed electrons

- Measurement of electrons from **charm and beauty** hadron decays
- Goal is to extract beauty and charm-decayed electron from the background of photonic electrons and hadrons
 - \rightarrow template fitting to Distance of Closest Approach (DCA) distribution (enabled thanks to HFT)

