Spin alignment measurements of vector mesons with ALICE at LHC

Bedanga Mohanty (On behalf of the ALICE Collaboration)

- ☐ High energy heavy-ion collisions
 - o Introduction
 - Initial conditions: Angular momentum & magnetic field
- □ Spin alignment of vector mesons
 - Observable and theory expectation
 - ALICE physics analysis
 - o Results
 - **D**iscussion
- Summary and Outlook

Based on:

EDITORS' SUGGESTION

Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions

ICHEP 2020 P

The measured spin alignment of vector mesons in heavy-ion collisions is consistent with that expected from the spin-orbit coupling of quarks with the large angular momentum of the collision.

S. Acharya *et al.* (The ALICE Collaboration) Phys. Rev. Lett. **125**, 012301 (2020)

Heavy-ion collisions

Reaction plane: Impact parameter and beam axis

L and B perpendicular to reaction plane

ALICE

Spin-orbital angular momentum interaction could manifest as vorticity (ω) of the fluid.

Angular distribution of vector mesons

Qualitative theory expectation

Z. Liang et. al., Phys. Lett. B629, 20 (2005)

□ Low *p*_T phenomena – Hadronization via recombination

- Small spin alignment for central and peripheral collisions
- Maximum effect for midcentral (intermediate impact parameter) collisions
- Effect larger for K* than \$\overline\$ mesons (factor 10 lifetime difference, re-scattering effect, heavier mass of strange quark, coherent field)

Physics process and theory expectation

Physics process	Theory	Remarks	Reference
Vorticity (ω)	$\rho_{00}(\omega) < 1/3$	$\rho_{00}(\omega) \sim \frac{1}{3} - \frac{1}{9}(\beta \omega)^2$	F. Becattini et al., Phys. Rev. C 95 (2017) 054902
Magnetic field (B)	$\begin{aligned} \rho_{00}(\mathrm{B}) &> 1/3 \\ &\sim \frac{1}{3} - \frac{1}{9}\beta \frac{q_1 q_2}{m_1 m_2} \mathrm{B}^2 \\ \rho_{00}(\mathrm{B}) &< 1/3 \end{aligned}$	Electrically neutral vector mesons Electrically charged vector mesons	Y. Yang et. al., Phys. Rev. C 97 (2018) 034917
Hadronization	$\begin{array}{l} \rho_{00}(\mathrm{rec}) < 1/3 \\ \sim \frac{1 - P_q P_q}{3 + P_q P_q} \\ \rho_{00}(\mathrm{frag}) > 1/3 \\ \sim \frac{1 + \beta P_q P_q}{3 - \beta P_q P_q} \end{array}$	Recombination Fragmentation	Z. Liang et. al., Phys. Lett. B 629 (2005) 20 (2005) Z. Liang and X. N. Wang Phys.Rev.Lett. 94 (2005) 102301
Coherent meson field	$\rho_{00} > 1/3$	φ mesons	X. L. Sheng et. al., Phys.Rev.D 101 (2020) 096005

Bedanga Mohanty - ICHEP 2020, Prague -- 31, July 2020

ALICE data set

Collision system	pp at 13 TeV, Pb-Pb at 2.76 TeV
Rapidity	y < 0.5
No. of events	~ 43 M (pp), 14 M (Pb-Pb)
Hadrons	pp: K^{*0} and ϕ Pb-Pb: $K^{*0}_{,} \phi$ and K_{S}^{0}
Background	Mixed events
Efficiency x acceptance	Corrected
Quantization axis	nn. Normal to production plane (DD)
	Pb-Pb: Normal to production plane (PP) Pb-Pb: Normal to production plane (PP), event plane (EP) and random event plane (RndEP: randomizing the event plane angle in azimuthal plane)

$K^{\ast 0}$ and ϕ vector meson

Angular distribution of vector mesons

Bedanga Mohanty - ICHEP 2020, Prague -- 31, July 2020

Spin alignment of vector mesons

Φ

K*0

- 1. Spin Alignment ($\rho_{00} < 1/3$) observed for spin 1 particle at low momentum
- No spin alignment ($\rho_{00} \sim 1/3$) 2. observed for spin 0 particle
- No spin alignment ($\rho_{00} \sim 1/3$) 3. observed in proton-proton collisions
- No spin alignment ($\rho_{00} \sim 1/3$) 4. observed for random planes

Phys. Rev. Lett. 125, 012301 (2020) - ALICE

Spin alignment: centrality dependence

- 1. Maximum spin alignment observed for mid-central collisions in low $p_{\rm T}$ (3 σ for K^{*0} and 2 σ for ϕ)
- 2. $\rho_{00} \sim 1/3$ for high $p_{\rm T}$ vector mesons
- 3. $\rho_{00} \sim 1/3$ for peripheral collisions and deviation from 1/3 small for central collisions

Phys. Rev. Lett. 125, 012301 (2020) - ALICE

Theoretical expectation & comparison to RHIC

Transverse momentum dependence

Transverse momentum dependence of ρ_{oo} consistent with polarization of quarks in the presence of large initial angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination

15/17

0.4

Pb+Pb 2.76 TeV, 0.5 < p_T < 0.7 GeV/c

STAR Preliminary

Au+Au 200 GeV, 1.2 < p_T < 5.4 GeV/c

STAR Preliminary, 10-60%, 1.2 < p₁ < 5.0 GeV/c

🛛 Au+Au

 First evidence of spin alignment in vector mesons in high energy **heavy-ion collisions**. Both RHIC and LHC observe the phenomenon.
Measurements **coupled to** event plane – vanishes

for random event plane \rightarrow related to **initial**

angular momentum

✓ Spin alignment not observed in proton-proton collisions

 ✓ Spin alignment **not** observed for **spin 0 particles** in heavy-ion collisions

Phys. Rev. Lett. 125, 012301 (2020) - ALICE

Outlook

A. Theoretical Side:

- The experimental measurements \rightarrow challenges to theory
- 1. Explain Lambda and vector meson results simultaneously
- 2. Explain the difference in ρ_{00} values of ϕ (> 1/3 at RHIC and < 1/3 at LHC) meson
- 3. Relativistic spin hydrodynamics
- 4. Models with conservation of angular momentum.

B. Experimental Side:

- Precision measurements may allow sensitivity to initial magnetic field
- 1. Lambda and anti-Lambda polarization
- 2. Charged K* and neutral K* ρ_{00}
- 3. Working on 2015+2018 Pb-Pb 5.02 TeV data set in ALICE


```
Pb-Pb 5.02 TeV - 2015
```

Establishing & proper treatment of initial conditions in heavy-ion collisions could have impact on the physics and discoveries in the area

17/17

BACK UP

Angular distribution of vector mesons

- 1. Angular distribution NOT FLAT for vector mesons with respect to quantization axis in heavy-ion collisions
- 2. Angular distribution FLAT for vector mesons with respect to random quantization axis
- 3. Angular distribution FLAT for spin-0 mesons K_{s}^{0} in heavy-ion collisions
- 4. Angular distribution FLAT for vector mesons in proton-proton collisions

Phys. Rev. Lett. 125, 012301 (2020) - ALICE arXiv:1910.14408 (ALICE)

Collision energy dependence K^{*0} r_{oo} 0.2 0. 3 STAR Preliminary, 10-60%, 1.2 < p 6 Au+Au ALICE, 10-50%, 0.8 < p S_{NN} GeV Pb+Pb < 5.0 GeV/c 5 < 1.2 GeV/c STAR: S. Singha, QM2019

Phys. Rev. Lett. 125, 012301 (2020) - ALICE

Looks like no energy dependence of ρ_{00} .

- *High statistics data at LHC and RHIC will clarify the picture.*
- ALICE Pb-Pb analysis at 5.02 TeV under progress.

Bedanga Mohanty - ICHEP 2020, Prague -- 31, July 2020

Relation between EP and PP

$$p_{00} (PP) - \frac{1}{3} = [\rho_{00} (EP) - \frac{1}{3}] [\frac{1+3v_2}{4}]$$

The physical picture is that spin alignment with respect to the event plane is coupled to that in the production plane through the elliptic flow of the system.

The $\rho_{00}(\text{RndEP})$ is lower than 1/3 as the quantization axis is always perpendicular to the beam axis, resulting in a residual effect.

arXiv:1910.14408 (ALICE)

On ρ_{00}

Source

procedure

Systematic uncertainties and checks

High $p_{\rm T}$

5%

13%

8%

ø

Low $p_{\rm T}$

8%

6%

3%

High $p_{\rm T}$

3%

5%

5%

K*0

• Closure test (data and MC)

Yield extraction procedure

Track selection criteria

Particle identification

Data samples with two different magnetic field polarities

Low $p_{\rm T}$

13%.

14%

7%

- Positive (0 < y < 0.5) and negative (-0.5 < y < 0) rapidity
- \circ K^{*0} and anti-K^{*0}
- $\circ~$ Two different event generators are used to determine the reconstruction efficiency