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Outline

The talk consists of two separate parts:

our developments of jet energy loss in medium
(a new development)

jet reconstruction and jet overlap effects
(IK, Aichelin, Gossiaux, Rohrmoser, Werner, Phys. Rev. C 101, 014905 (2020))
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Our project

To get both hydrodynamic IS and initial hard partons from EPOS3 (currently),
make hydrodynamic and jet parts talk to each other, add hadronization scheme

and jet finding.
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Time-like parton shower

Monte Carlo simulation of DGLAP equations for a parton shower between
virtuality scales Q↑ (from Born process in EPOS) and Q↓ = 0.6 GeV.
Vacuum shower developed by Martin Rohrmoser

Qmax~pT

Q0~mq,g

sketch taken from Liliana Apolinário’s talk

On top of that:

The time evolution is split into timesteps (ideal for merging with
hydrodynamic medium evolution)

Parton splitting (for high-Q2 partons) happens with a probability according to
mean life times between the splittings ∆t = E/Q2.

Elastic scatterings off medium partons

Medium-induced radiation for low-Q2 (below Q↓): see next slides
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Part I: Jet energy loss
The goal here is to implement a microscopic treatment for the medium-induced
gluon radiation of quarks/gluons at low virtuality Q2.
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Medium-induced radiation: single radiation process

Basic idea: Gunion, Bertsch ’82

Extension for heavy quark projectile and
dynamical light quarks:
Aichelin, Gossiaux, Gousset, Phys. Rev. D89,
074018 (2014):

In the region of small x, the matrix elements from QCD can be approximated by
so-called scalar QCD1, which at high energy leads to a factorized formula for the
total cross section of the radiation process:

dσQq→Qqg

dxd2kT d2lT
=

dσel

d2lT
Pg(x,kT , lT )θ(∆), where

Pg(x, ~kT ,~lT ;M) =
CAαs

π2
1− x

x

(
~kT

~kT
2
+ x2M2

−
~kT −~lT

(~kT −~lT )2 + x2M2

)2

,

and dσel
d2lT
→ 8α2

s

9(~lT
2
+µ2)2

. Allows for finite quark/gluon masses → heavy quark jets

1Scalar QCD is a case of spin-0 quarks interacting with non-Abelian gauge field (gluons).
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Multiple radiations and coherence effects

For the multiple scatterings in medium,
one has to take into account coherence
effects: Landau-Pomeranchuk-Migdal
(LPM) effect in QED, or BDMPS-Z in
QCD.

We adopted a faithful implementation of the BDMPS-Z by Zapp, Stachel,
Wiedemann, JHEP 07 (2011), 118

For low-Q2 partons: at each timestep, an elastic scattering and/or a radiation
of pre-formed gluon happens with a probability Rel∆t, Rinel∆t respectively.

Each parton can generate arbitrary number of pre-formed gluons (∝blob).

Implementation ob BDMPS-Z: see the next slide.
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The Monte Carlo algorithm for coherent radiation block

Trial incoherent gluon radiation

Gluon phase accumulation

∆ϕ =
k2

T
ω·h̄c ∆t

Elastic scatterings

each scattering increments Ns = Ns +1

Phase accumulated: ϕ = ϕc
Still in medium?

Yes No

Form with probability 1/Ns

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile

Yes No

Add the gluon
as radiated

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile
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A test: reproducing the ω ·dI/dω ∝ 1/
√

ω,1/ω

A simplified setup a-là Zapp, Stachel, Wiedemann, JHEP 07 (2011), 118

mono-energetic quark gun, quarks at the mass-shell

incoherent gluon radiation
dIincoh/dω = 1/ω with cut-offs [ωmin,ωmax].

initial kT = 0 for the trial radiated gluons

eikonal limit: projectile is not affected by scatterings, kT � ω, no phase
space treatment
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A test: reproducing the ω ·dI/dω ∝ 1/
√

ω,1/ω

projectile: E = 100 GeV quark, medium: box L = 1 fm and Rel = Rinel = 0.1 fm.

change in regime for ω ·dI/dω from 1/
√

ω to 1/ω happens at ω = ωc,

where ωc ≈ q̂L2

2ϕch̄ . With the present settings, ωc ≈ 3.4 GeV for L = 1 fm.
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Also, by setting ϕc = 0 we reproduce the incoherent limit 1/ω.
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From 1/ω to full Gunion-Bertsch radiation seed

Projectile: E = 100 GeV quark, medium: box L = 1 fm and Rel = Rinel = 0.1 fm.

case 1:
dIincoh

dω
= 1

ω

case 2: Gunion-Bertsch
radiation seed without
phase space restrictions

case 3: +phase space
restriction θ(∆)
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With the full Gunion-Bertsch (GB) radiation seed (case 3), one can hardly
identify any region where dI/dω ∝ ω−3/2, because the underlying incoherent
radiation is far from ω−1, kT � ω behaviour.
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LPM suppression in the full GB case

Projectile: E = 100 GeV quark, medium: box L = 1 fm and Rel = Rinel = 0.1 fm.
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LPM (BDMPS-Z) effect has a strong influence on the radiation rate.
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A more realistic calculation

Medium: box L = 4 fm of QGP with T = 350 MeV
massive medium constituents: mq = 330 MeV, mq = 564 MeV

mono-energetic “quark gun” with Eini = Q↑ = 100 GeV.

DGLAP shower down to Q↓ = 0.6 GeV

energy loss via the medium-induced coherent radiation from above;
fixed αs = 0.4, infrared regularisation µ = 623 MeV (derived from Debye
mass)

hadronisation via Pythia8

jet reconstruction: anti-kT , R = 0.5 with FASTJET 3.3
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Projectile: E = Q↑ = 100 GeV quark, medium: L = 4 fm T = 350 MeV QGP box.
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With the current setup, we observe around 2 GeV in-medium energy loss for the
initial 100 GeV hard parton.
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Projectile: E = Q↑ = 100 GeV quark, medium: L = 4 fm T = 350 MeV QGP box.

Two different settings for the parton lifetimes between the splittings:
∆t = E/Q2 (used above) and ∆t = 1

4 E/Q2:
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→ The energy loss strongly depends on the formation time setting for the high-Q2

DGLAP! Jet formation (DGLAP) and BDMPS happen consecutively in the same box, so

the faster the jet is formed, the more time/space is there for the BDMPS radiative EL.
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NB: the energy loss profile cannot be captured by a single number ∆Ejet:

The plot on the last slide is in the same spirit and qualitatively similar to:
Qin, Ruppert, Gale, Jeon, Moore, and Mustafa, Phys. Rev. Lett. 100, 072301 (2008)
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collisonal energy loss profile:
a Gaussian centered around Ejet

radiative energy loss:
a wide distribution extending down
to small Ejet (large energy loss
∆Erad)

To go from this plot to RAA, one has to convolute the ∆E(pT ) with the initial
spectrum of hard partons dσ/d pT ⇒ the magnitude of the pT shift of final jet
spectrum from pp to AA might not be equal to ∆E.
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Part II: Jet reconstruction and jet overlap

In the rest of the talk:

medium effects are switched off

there are no medium partons/hadrons
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EPOS initial state

Q

Q

Q

Q

Q

Q

Born

SLC

TLC

SLC

TLC

Parton-Based Gribov-Regge
Theory

H. J. Drescher, M. Hladik, S. Ostapchenko,

T. Pierog, K. Werner, Phys. Rept. 350, 93,

2001

Pomeron = parton ladder,
treated as a kinky string.

Spacelike cascades including Born process in the EPOS IS provide partons with all
pT which are further separated into core and corona.

The IS produces multiple hard partons in each (central) Pb-Pb collision!
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Jet reconstruction
A current shortcut:
Final state of a jet (partons) → no hadronization → jet finding.
Jet finding: vanilla FASTJET 3.3, anti-kT algorithm
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The artefacts
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‘runaway’ jet partons are not clustered with the rest (loss, ∆p⊥ < 0)

partons from neighbouring jets are clustered together (gain, ∆p⊥ > 0)
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Jet shape for R = 0.5 cone size
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The core of the jet (r < 0.2) has negligible contribution from the jet overlap.

For the periphery of the jet the jet overlap starts to be important.

The ratio of intruders/total weakly depends on the p⊥ of the jet
The effect persists up to p⊥ = 80 GeV and presumably above.

More details: see my JETSCAPE2020 contribution here.
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Gain and loss to the reconstructed jet p⊥
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For smaller R, more jet momentum is lost (outside of the cone).

The larger R, more jet momentum is gained (from the neighbouring jets).
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How do the experiments deal with it

CMS performs a background subtraction in a statistical way based on
PYTHIA+HYDJET simulations - which also removes the jet overlap effects.
⇒ It should remove the overlap effect as the background jets are not
correlated with the jet of interest.
CMS Collaboration, JHEP 1805 (2018) 006

ALICE reports the ratio of actual jet shape in PbPb events relative to the
shape of (vacuum) PYTHIA jets embedded into actual PbPb events, as a
proxy for the PbPb/pp ratio.
⇒ It should remove the overlap effect as well, provided that PYHIA gives
correct shape of vacuum jets.
ALICE Collaboration, Phys.Lett. B796 (2019) 204-219

In order to have apple-to-apple comparison
with the experiment, we should:

I Either degrade the model so that we have
solitary jets

I Or keep all jets together but add all the
machinery (medium hadrons, background
subtraction)
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Summary
Part I:

We’ve constructed a Monte Carlo implementation of the coherent radiative
enegry loss in BDMPS-Z formalism, based on an extension of the
Gunion-Bertsch model to massive quarks/gluons.

We find that with such Gunion-Bertsch-like radiation seed,
the energy spectrum of radiated gluons does not manifest
the ω−3/2 behaviour.

The energy loss profile is wide and it cannot be characterized
by a single quantity ∆Erad.
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Part II:
EPOS3 initial state produces multiple hard partons = jet seeds in each
central Pb-Pb event at the LHC energies.

This leads to the effect of jet overlap in momentum space, once we
reconstruct all the jets together in a HI event with FASTJET.

The effect influences the jet shape.

As experiments correct for that, the most practical solution
is to treat the modelled jets separately. 0.0 0.1 0.2 0.3 0.4 0.5
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(IK, Aichelin, Gossiaux, Rohrmoser, Werner, Phys. Rev. C 101, 014905 (2020))
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