IMPROVEMENTS TO ML FOR
SEARCHES AT THE LHC

- A summary of MLST:ab983a

Giles Strong
ICHEP, Prague (online) - 28/07/20

giles.strong@outlook.com

twitter.com/Giles C Strong

Amva4newphysics.wordpress.com

github.com/GilesStrong

https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

INTRODUCTION

ML REQUIREMENTS AT ANALYSIS LEVEL

® Example: typical event-level classifier in a search
® Train algorithm multiple times at short notice = train time < | day
® Cannot assume GPU access, must work well on CPU

® Application time depends on dataset size and number of systematics (run
multiple predictions per event)

® Typically want to process entire dataset in under a few hours

® Cannot assume GPU access, must work well on CPU

HIGGS ML SOLUTIONS

2014 Higes ML Kaggle competition

simulated a typical data-analysis level
application of ML in HEP

Entrants included both physicists and
professional data-scientists
° Strong competition

Top performance requires:

* 13h using an expensive GPU
* 110m accounting for
hardware improvement

®* Or 36h on an 8-core CPU instance

Most analysis-level researchers just have a

laptop or scheduled access to shared
GPU:s.

1%t place | 2™ place 34 place
Method 70 DNNs | Many BDTs 108 DNNs
Train-time (GPU) | 12h N/A N/A
Train-time (CPU) | 35h 48h 3h
Test-time (GPU) | 1h N/A N/A
Test-time (CPU) | 777 77 20 min
Score 3.80581 | 3.78913 3.78682

https://www.kaggle.com/c/higgs-boson

QUESTION

® Have there been any new methods in deep learning since 2014 which
when applied to a HEP search:

® Improve sensitivity to signal?
® Reduce training and application time?

® Have a lower hardware requirement!?

Let’s use the HiggsML challenge as a benchmark and see!

HIGGS ML DATASET

ATLAS 2012 MC full simulation with Geant 4

Signal: Higgs to di-tau

Backgrounds: Z— 7z, tt, and W decay

Events selected for the semi-leptonic channel: 77 — (e | u) + 7,

250,000 labelled events for training, 550,000 unlabelled events for testing

31| features:

® 3-momenta of main final-states and upto two jets (p,ordered)

® High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera

6

http://opendata.cern.ch/record/328

CHALLENGE AIM

® Solutions must predict signal or background for each test event

® Solutions ranked via their Approximate Median Significance

® Quick, accurate, analytical approximation of full discovery significance

® s =sum of weights of true positive events (signal events determined by the solution

to be signal)

b = weights of false positive events (backgrounds events determined by the
solution to be signal)

® b _= constant term (set to 10 for the challenge)

S
AMS =4/2(s+ b+ by)log ((1+ b —s))

https://arxiv.org/abs/1007.1727

BASELINE MODEL

® The basic classifier is:
® 4-layer 100 neuron, fully-connected network, with ReLU activations
® Adam to minimise the weighted binary cross-entropy of event class predictions

® Learning rate found using LR range test (Smith 2015 & 2018, see backups)

® An ensemble of 10 such classifiers is trained

® Baseline achieves metric-score of 3.664+0.007

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

METHOD TESTING

Presented in order tested, but some methods are skipped to save time

CATEGORICAL ENTITY EMBEDDING

® Guo & Berlkhahn 2016 : a method of inputting categorical features without

|-hot encoding

® Gives a small improvement, but there’s only one categorical feature in the
dataset (number of jets)

See paper or backups for details

https://arxiv.org/abs/1604.06737

DATA AUGMENTATION

® Copy data by exploiting invariances
between input and target:
® E.g. can flip, zoom, rotate, & adjust image
pixels but object does not change class
® Applied at train-time to artificially increase
dataset size e.g Krizhevsky et al. 2012

® Applied at test-time to get multiple
predictions per datapoint and average

11

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

DATA AUGMENTATION

® At the CMS and ATLAS detectors at the

LHC, can exploit the azimuthal and
longitudinal invariance of events:

Rotate in ¢, flip in 77, and flip in either x or
y axis

Alternative is to remove symmetries by
setting common alignment for events

® E.g rotate & flip events such that leptons

are always at ¢ = 0, > 0, and taus are
alwaysat ¢ >0
* Using data augmentation results in:

® Large performance improvement

® Very large increase in train & application

time (but still reasonable to use)

SKIPPED METHODS

® Cosine annealed LR schedule (Loshchilov and Hutter, 2016)

® Slight improvement in performance, but replaced with |cycle (coming up soon)

® Swish activation function (Ramachandran et al., 2017)

¢ Small performance improvement

® Advanced ensembling: Snapshot ensembling, Fast geometric ensembling,

Stochastic weight averaging

® SWA gave slight improvement in performance, but replaced with Icycle (coming up

soon)

13

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407

| CYCLE SCHEDULE

Learning phase,
High LR stabilised

Initial by low
nitial warm-up
: . momentum
® Smith 2018 introduces the Icycle schedule phase Convergence
® Adjusts the learning rate and momentum / phase
of the optimiser during training o
- .) . ‘S 00004
* Original paper used linear interpolation 0003
£
® FastAl found a cosine interpolation was E 2002
. 8 0.0001
better, as illustrated 2 oo
e . . . - 0 5000 10000 15000 20000
® Reduces training time by over 50% with
no change in performance! g
_g 0.96
g 094
209 1%
0.90
0 5000 10000 15000 20000

lterations

https://arxiv.org/abs/1803.09820
https://www.fast.ai/

DENSE CONNECTIONS

® Huang et al. 2016 presents Densenet, a
CNN architecture in which channel-wise
concatenation is used to pass all the
feature-maps from all previous layers to all
subsequent layers

® Information is never ‘lost’, i.e. each layer
has access to all the original inputs and
weights have more direct gradient flow

® Reduces required number of
free-parameters and enables ‘deep

supervision’

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1409.5185

DENSE CONNECTIONS

DNNs here are not convolutional

° Instead use width-wise concatenation of
previous hidden states

Places less reliance on exact settings of

width and depth of network layers by
protecting against over-parametrisation

® Reduced layer widths to number of inputs
33)
® Increased number of layers to 6 (was 4)

® Reduces number of free parameters by a
third

Provides:

® Small performance improvement

e Small increase in train time

|
Y

Hidden + Activation layer

\ 4

+ Concatenation

Hidden + Activation layer

16

® Model fixed and private AMS computed

® Solution here matches |*-place
performance

® Hardware for mine:
® GPU: Nvidia 1080 Ti
® CPU: Intel i7-8559U (MacBook Pro 2018)
® More hardware timings in backups

® Accounting for difference in GPU (Titan
— 1080 Ti) processing power, |**-place:

Trains in 100 minutes (mine 8 minutes =
92% quicker on GPU)

Tests in 8 minutes (mine |5 seconds =
97% quicker on GPU)

N.B. Doesn’t include software changes
(LISP—PyTorch)

TESTING

Our solution || 1% place |2°¢ place 34 place
Method 10 DNNs 70 DNNs |Many BDTs 108 DNNs
Train-time (GPU) | 8 min 12h N/A N/A
Train-time (CPU) | 14min 35h 48h 3h
Test-time (GPU) | 15s 1h N/A N/A
Test-time (CPU) | 3min 777 777 20 min
Score 3.806 £ 0.005 [3.80581 3.78913 3.78682

17

IMPROVEMENT CONTRIBUTIONS

Dense connections
4.2%

Swish + 1cycle
3.0%

Data Aumentation
31.9%
Ensembling
60.9%
]] Relative contributions
Entity Embedding

improvements to
Private AMS over
single baseline model

0.1%

18

SUMMARY

SUMMARY

Algorithms can be further improved by staying up-to-date with the field of
deep-learning
HiggsML study showed new methods:

® Bring genuine improvements in performance

® Reduce train and application time

® Reduce hardware requirements: can run powerful algorithms on a laptop CPU

Solutions developed in LUMIN (PyTorch wrapper)

° Study code

20

Accepted manuscript, Preprint (no watermark)

https://lumin.readthedocs.io/en/stable/
https://pytorch.org/
https://github.com/GilesStrong/HiggsML_Lumin
https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://arxiv.org/abs/2002.01427

BACKUPS

LEARNING RATE FINDER

“[The Learning Rate] is often the single most important hyperparameter
and one should always make sure that it has been tuned” - Bengio, 2012

Previously this required running several different trainings using a range of
LRs

The LR range test (Smith 2015 & 2018) can quickly find the optimum LR
using a single epoch of training

22

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

LEARNING RATE FINDER

Loss

. Starting from a tiny LR (~le-7),
the LR is gradually increased after
each minibatch

Weight i
23

LEARNING RATE FINDER

2. Eventually the network starts
training (loss decreases)

Weight i
24

LEARNING RATE FINDER

At a higher LR the network can
no longer train (loss plateaus),
and eventually the network
diverges (loss increases)

Loss

N7

Weight i

25

LEARNING RATE FINDER

® The optimum LR is the highest LR at which the loss is still decreasing

Further explanation in this |esson

0.00008
0.00007

v 0.00006
&
—

0.00005
0.00004

10-° 1074 10-3 102
Learning rate

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s

CATEGORICAL ENTITY EMBEDDING

Categorical features = features with

discrete values and no numerical
comparison

Normal to |-hot encode as Boolean
vector (Monday — 1000000)

But potentially means a large number of
extra inputs to NN (day of year = 365
inputs)

Guo & Berlchahn 2016 learns lookup
tables which provide a compact, but rich,
representation of categorical values as

vector of floats (Monday —
0.3,0.9,0.4,0.7)

A

$3Jnieaj snonunuod

i
"él ¥eam g, Aeq |

To network

—

Loss
Gradient

o
©

o
IS

. 1°
w

.
~N

27

https://arxiv.org/abs/1604.06737

CATEGORICAL ENTITY EMBEDDING

0

® Embedding values start from random
initialisation -0.091 0.14 12

® Receive gradient during backpropagation 06
and are learnt just like any other network

parameter

0.33 16

1
S
&

00

® Embedding of the number of jets in each 1.1 1.5 0.98

event gives:

06

-0‘21 0‘063 I —1 2

2

PRI_jet num
2

3

® Moderate performance improvement
3.664+0.007—3.7110.02

0 1
Small increase in train & application time .
P Embedding

28

SGD WITH WARM RESTARTS.... change cycle tength

Adjusting the LR during training is a
common technique for achieving better
performance

Normally this involves decreasing the LR
once the validation loss becomes flat

Loshchilov and Hutter 2016 instead
suggests that the LR should be decay as a
cosine with the schedule restarting once
the LR reaches zero

® cosine annealing

Huang et al. 2017/ later suggests that the
discontinuity allows the network to
discover multiple minima in the loss
surface

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075

Learning Rate

0.00050

0.00025

0.00000

054 Single Model
24 Standard LR Schedule
), y

i

5000

during training

=

10000 15000 20000
lterations

%% Snapshot Ensemble :
{ Cyclic LR Schedule -

\

)

7 9

~as:,~; ‘ @l— 4353
30 — - y 20
) -, 20

Lower figure - Huang et al., 2017, arXiv:1704.00109

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1704.00109

® Used cosine annealing and doubled the
cycle-length with each restart
® Resultsin

¢ Small performance improvement 3.79
+0.01—3.80+0.02

Very large increase in train time (but still
reasonable to use)

0.000040

0.000038

/]
[72]

(e}
_ 0.000036

0.000034

0.000032

SGD WITH WARM RESTARTS

—— Validation

Warm restarts

0 50 100 150 200 250

Epoch

30

SWISH ACTIVATION FUNCTION

The Swish activation function

(Ramachandran et al., 2017) found via
reinforcement learning

— RelU
. . . . SELU
Provides a region of negative gradient — Swish

® Shown to provide incremental

improvement over other activation
functions

Act(x)

® Provides: 0

® Small performance improvement 3.80 a1

+0.02—3.81+0.02

Small increase in train and application - - -3 2 2 0
time

N.B. Had previously tested SELU

(Klambauer et al., 2017) , but Swish
erformed better

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1706.02515

ADVANCED ENSEMBLING

Tested several methods:
® Huang etal. 2017 (Snapshot ensembling (SSE))
® Produces ensembles in a single training
® Garipov et al. 2018 (Fast geometric ensembling (FGE))
® Produces larger ensembles in a single training
® Izmailov et al. 2018 (Stochastic weight averaging (SWA))
® Approximates FGE in a single model
SWA provided reduced training time and replaced cosine annealing
® Was then replaced by | cycle (coming up next)

See Sec. 4.8 of paper for details

32

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2002.01427

METRIC EVOLUTION

41— Val. AMS at cut (MVAC)
—f— Maximum Val. AMS (MMVA)

40 —+— Mean Public AMS (MAPA) —

MAPA was the 4 overall Public AMS

main 3.9 —}— Overall Private AMS

optimisation
metric o8 e
D37
Overall =
Public|Private 36
AMSs only -
checked at end
34
3.3

RelLU RelLU RelLU RelLU RelLU RelLU Swish Swish Swish Swish
Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble
Embed Embed Embed Embed Embed Embed Embed Embed

Fix Aug Aug Aug Aug Aug Aug
Cosine Cosine SWA Onecycle Onecycle
Dense

Solution

MVAC & MMVA
were two other
optimisation metrics,
but were known to
be optimistic

33

3000

2500

2000

1500

Time [s]

1000

500

TRAINING TIME

—}— Intel Core i7-8559U CPU @ 2.7 GHz (4x2)
—— Intel Core i7-8700K CPU @ 3.7 GHz (6x2)
—— Intel Xenon Skylake CPU @ 2.2 GHz (2x1)
—}— Intel Xenon Skylake CPU @ 2.2 GHz (4x1)
—— Nvidia GeForce GTX 1080 Ti GPU

RelLU RelLU RelLU RelLU RelLU RelLU Swish Swish Swish Swish
Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble

Embed Embed Embed Embed Embed Embed Embed Embed 34
Fix Aug Aug Aug Aug Aug Aug
Cosine Cosine SWA Onecycle Onecycle
Dense

Solution

| TESTING TIME

175 —— Intel Core i7-8559U CPU @ 2.7 GHz (4x2)
—}— Intel Core i7-8700K CPU @ 3.7 GHz (6x2)

150 —— Intel Xenon Skylake CPU @ 2.2 GHz (2x1)
—— Intel Xenon Skylake CPU @ 2.2 GHz (4x1)
—— Nvidia GeForce GTX 1080 Ti GPU

125

75

Time [S]

50

25

RelLU RelLU RelLU RelLU RelLU RelLU Swish Swish Swish Swish
Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble Ensemble
Embed Embed Embed Embed Embed Embed Embed Embed

Fix Aug Aug Aug Aug Aug Aug
Cosine Cosine SWA Onecycle Onecycle
Dense

Solution

LUMIN

¥ master v+ |} 3branches © 11tags Go tofile Add file ~ About @

® LUMIN is a PyTorch wrapper library that e —

. . . @ GilesStrong Changes and Readme update c5ba324 14 daysago D) 472 commits science ecosystem for high-energy
d I f h physics.
PrOVI es Im p ementa‘tlons or t ese B .vscode more vector ops. 9 months ago
deep-learning machine-learning
methods decs running tests BSUMOND e scence sttites hep
B8 examples Merge pull request #85 from GilesStrong/quick fixes 19 days ago pytorch
[AI . I d h f‘ I h d & B lumin Merge branch ‘master of github.com:GilesStrong/lumin 14 days ago M Readme
SO Includes other useful methods - ,
O .gitignore Adding matrix example 6 months ago # Apache-2.0 License
classes for working with HEP data and D
. [CHANGES.md Changes and Readme update 14 days ago Releases ‘71
columnar data in general, and more pe— Mmohsa00 v Thecracent s, (D)
[LICENSE Updating licence 5 months ago onzren
° E d dds RNNs, CNN
’g' recent u P ate a S S, S, O MANIFEST.in Include missing files for sdist 2 months ago b
[README.md Changes and Readme update 14 days ago
and a few graph-nets Packages
O abbrmd Docs for mat heads 7 months ago
No packages published
[Li n ks . O build.md Move to new version 5 months ago Publish your first package
¢ [requirements.txt running tests last month
° [setup.cfg Install stuff 2 years ago Contributors 3
Docs .
— O setuppy Fixes 19 days ago & oilesstrong Gilesstrong
i £ iryteo kiryteo
® G |th u b README.md Va

t‘ thatch thatch

pypi W05 | python 3.6 | 3.7 | license |Apache Software License 2.0

° DOI 10.5281/zenodo.3664978

Colab examples

LUMIN: Lumin Unifies Many Improvements for Networks Languages

® Python 100.0%

Issues - contributions welcome!

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc

