
IMPROVEMENTS TO ML FOR
SEARCHES AT THE LHC

- A summary of MLST:ab983a

Giles Strong
ICHEP, Prague (online) - 28/07/20

giles.strong@outlook.com
twitter.com/Giles_C_Strong

Amva4newphysics.wordpress.com
github.com/GilesStrong

https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

INTRODUCTION

2

ML REQUIREMENTS AT ANALYSIS LEVEL

• Example: typical event-level classifier in a search

• Train algorithm multiple times at short notice = train time < 1 day
• Cannot assume GPU access, must work well on CPU

• Application time depends on dataset size and number of systematics (run
multiple predictions per event)
• Typically want to process entire dataset in under a few hours

• Cannot assume GPU access, must work well on CPU
3

HIGGS ML SOLUTIONS

4

• 2014 Higgs ML Kaggle competition
simulated a typical data-analysis level
application of ML in HEP

• Entrants included both physicists and
professional data-scientists

• Strong competition
• Top performance requires:

• 13h using an expensive GPU
• 110m accounting for

hardware improvement
• Or 36h on an 8-core CPU instance

• Most analysis-level researchers just have a
laptop or scheduled access to shared
GPUs.

https://www.kaggle.com/c/higgs-boson

QUESTION

• Have there been any new methods in deep learning since 2014 which
when applied to a HEP search:
• Improve sensitivity to signal?

• Reduce training and application time?

• Have a lower hardware requirement?

• Let’s use the HiggsML challenge as a benchmark and see!

5

HIGGS ML DATASET
• ATLAS 2012 MC full simulation with Geant 4

• Signal: Higgs to di-tau

• Backgrounds: Z→ 𝜏𝜏, tt, and W decay

• Events selected for the semi-leptonic channel: 𝜏𝜏 → (e | 𝜇) + 𝜏h

• 250,000 labelled events for training, 550,000 unlabelled events for testing

• 31 features:
• 3-momenta of main final-states and upto two jets (pT ordered)

• High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera 6

http://opendata.cern.ch/record/328

CHALLENGE AIM

• Solutions must predict signal or background for each test event

• Solutions ranked via their Approximate Median Significance
• Quick, accurate, analytical approximation of full discovery significance

• s = sum of weights of true positive events (signal events determined by the solution
to be signal)

• b = weights of false positive events (backgrounds events determined by the
solution to be signal)

• br = constant term (set to 10 for the challenge)

7

https://arxiv.org/abs/1007.1727

BASELINE MODEL

• The basic classifier is:
• 4-layer 100 neuron, fully-connected network, with ReLU activations

• Adam to minimise the weighted binary cross-entropy of event class predictions

• Learning rate found using LR range test (Smith 2015 & 2018, see backups)

• An ensemble of 10 such classifiers is trained

• Baseline achieves metric-score of 3.664±0.007

8

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

METHOD TESTING
Presented in order tested, but some methods are skipped to save time

9

CATEGORICAL ENTITY EMBEDDING

• Guo & Berkhahn 2016 : a method of inputting categorical features without
1-hot encoding

• Gives a small improvement, but there’s only one categorical feature in the
dataset (number of jets)

• See paper or backups for details

10

https://arxiv.org/abs/1604.06737

DATA AUGMENTATION

• Copy data by exploiting invariances
between input and target:

• E.g. can flip, zoom, rotate, & adjust image
pixels but object does not change class

• Applied at train-time to artificially increase
dataset size e.g Krizhevsky et al. 2012

• Applied at test-time to get multiple
predictions per datapoint and average

11

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

DATA AUGMENTATION
• At the CMS and ATLAS detectors at the

LHC, can exploit the azimuthal and
longitudinal invariance of events:

• Rotate in 𝜙, flip in 𝜂, and flip in either x or
y axis

• Alternative is to remove symmetries by
setting common alignment for events

• E.g. rotate & flip events such that leptons
are always at 𝜙 = 0, 𝜂 > 0, and taus are
always at 𝜙 > 0

• Using data augmentation results in:
• Large performance improvement

• Very large increase in train & application
time (but still reasonable to use)

12

SKIPPED METHODS

• Cosine annealed LR schedule (Loshchilov and Hutter, 2016)
• Slight improvement in performance, but replaced with 1cycle (coming up soon)

• Swish activation function (Ramachandran et al., 2017)
• Small performance improvement

• Advanced ensembling: Snapshot ensembling, Fast geometric ensembling,
Stochastic weight averaging
• SWA gave slight improvement in performance, but replaced with 1cycle (coming up

soon)
13

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407

1CYCLE SCHEDULE

• Smith 2018 introduces the 1cycle schedule
• Adjusts the learning rate and momentum

of the optimiser during training
• Original paper used linear interpolation
• FastAI found a cosine interpolation was

better, as illustrated

• Reduces training time by over 50% with
no change in performance!

14

Initial warm-up
phase

Learning phase,
High LR stabilised
by low
momentum Convergence

phase

https://arxiv.org/abs/1803.09820
https://www.fast.ai/

DENSE CONNECTIONS

• Huang et al. 2016 presents Densenet, a
CNN architecture in which channel-wise
concatenation is used to pass all the
feature-maps from all previous layers to all
subsequent layers

• Information is never ‘lost’, i.e. each layer
has access to all the original inputs and
weights have more direct gradient flow

• Reduces required number of
free-parameters and enables ‘deep
supervision’

15

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1409.5185

DENSE CONNECTIONS
• DNNs here are not convolutional

• Instead use width-wise concatenation of
previous hidden states

• Places less reliance on exact settings of
width and depth of network layers by
protecting against over-parametrisation

• Reduced layer widths to number of inputs
(33)

• Increased number of layers to 6 (was 4)
• Reduces number of free parameters by a

third

• Provides:
• Small performance improvement
• Small increase in train time

Hidden + Activation layer

+

Hidden + Activation layer

+ 16

Concatenation

TESTING
• Model fixed and private AMS computed

• Solution here matches 1st-place
performance

• Hardware for mine:
• GPU: Nvidia 1080 Ti
• CPU: Intel i7-8559U (MacBook Pro 2018)
• More hardware timings in backups

• Accounting for difference in GPU (Titan
→ 1080 Ti) processing power, 1st-place:

• Trains in 100 minutes (mine 8 minutes =
92% quicker on GPU)

• Tests in 8 minutes (mine 15 seconds =
97% quicker on GPU)

• N.B. Doesn’t include software changes
(LISP→PyTorch)

17

IMPROVEMENT CONTRIBUTIONS

18

Relative contributions
improvements to
Private AMS over
single baseline model

SUMMARY

19

SUMMARY
• Algorithms can be further improved by staying up-to-date with the field of

deep-learning
• HiggsML study showed new methods:

• Bring genuine improvements in performance

• Reduce train and application time

• Reduce hardware requirements: can run powerful algorithms on a laptop CPU

• Solutions developed in LUMIN (PyTorch wrapper)
• Study code

• Accepted manuscript, Preprint (no watermark) 20

https://lumin.readthedocs.io/en/stable/
https://pytorch.org/
https://github.com/GilesStrong/HiggsML_Lumin
https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://arxiv.org/abs/2002.01427

BACKUPS

21

LEARNING RATE FINDER

• “[The Learning Rate] is often the single most important hyperparameter
and one should always make sure that it has been tuned” - Bengio, 2012

• Previously this required running several different trainings using a range of
LRs

• The LR range test (Smith 2015 & 2018) can quickly find the optimum LR
using a single epoch of training

22

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

23

LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

24

LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

3. At a higher LR the network can
no longer train (loss plateaus),
and eventually the network
diverges (loss increases) 25

LEARNING RATE FINDER

• The optimum LR is the highest LR at which the loss is still decreasing

• Further explanation in this lesson

26

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s

CATEGORICAL ENTITY EMBEDDING
• Categorical features = features with

discrete values and no numerical
comparison

• Normal to 1-hot encode as Boolean
vector (Monday → 1000000)

• But potentially means a large number of
extra inputs to NN (day of year = 365
inputs)

• Guo & Berkhahn 2016 learns lookup
tables which provide a compact, but rich,
representation of categorical values as
vector of floats (Monday →
0.3,0.9,0.4,0.7) 27

https://arxiv.org/abs/1604.06737

CATEGORICAL ENTITY EMBEDDING

• Embedding values start from random
initialisation

• Receive gradient during backpropagation
and are learnt just like any other network
parameter

• Embedding of the number of jets in each
event gives:

• Moderate performance improvement
3.664±0.007→3.71±0.02

• Small increase in train & application time
28

SGD WITH WARM RESTARTS
• Adjusting the LR during training is a

common technique for achieving better
performance

• Normally this involves decreasing the LR
once the validation loss becomes flat

• Loshchilov and Hutter 2016 instead
suggests that the LR should be decay as a
cosine with the schedule restarting once
the LR reaches zero

• cosine annealing

• Huang et al. 2017 later suggests that the
discontinuity allows the network to
discover multiple minima in the loss
surface

29

Lower figure - Huang et al., 2017, arXiv:1704.00109

Can change cycle length
during training

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1704.00109

SGD WITH WARM RESTARTS

• Used cosine annealing and doubled the
cycle-length with each restart

• Results in
• Small performance improvement 3.79

±0.01→3.80±0.02
• Very large increase in train time (but still

reasonable to use)

30

Warm restarts

SWISH ACTIVATION FUNCTION
• The Swish activation function

(Ramachandran et al., 2017) found via
reinforcement learning

• Provides a region of negative gradient
• Shown to provide incremental

improvement over other activation
functions

• Provides:
• Small performance improvement 3.80

±0.02→3.81±0.02
• Small increase in train and application

time

• N.B. Had previously tested SELU
(Klambauer et al., 2017) , but Swish
performed better

31

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1706.02515

ADVANCED ENSEMBLING
• Tested several methods:

• Huang et al. 2017 (Snapshot ensembling (SSE))
• Produces ensembles in a single training

• Garipov et al. 2018 (Fast geometric ensembling (FGE))
• Produces larger ensembles in a single training

• Izmailov et al. 2018 (Stochastic weight averaging (SWA))
• Approximates FGE in a single model

• SWA provided reduced training time and replaced cosine annealing
• Was then replaced by 1cycle (coming up next)

• See Sec. 4.8 of paper for details
32

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2002.01427

METRIC EVOLUTION

33

MAPA was the
main
optimisation
metric

Overall
Public|Private
AMSs only
checked at end

MVAC & MMVA
were two other
optimisation metrics,
but were known to
be optimistic

TRAINING TIME

34

TESTING TIME

35

LUMIN
• LUMIN is a PyTorch wrapper library that

provides implementations for these
methods

• Also includes other useful methods &
classes for working with HEP data and
columnar data in general, and more

• E.g. recent update adds RNNs, CNNs,
and a few graph-nets

• Links:
• Docs
• Github
• Colab examples
• Issues - contributions welcome!

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc

