

IMPROVEMENTS TO ML FOR SEARCHES AT THE LHC

A summary of <u>MLST:ab983a</u>

Giles Strong

ICHEP, Prague (online) - 28/07/20

giles.strong@outlook.com

twitter.com/Giles C Strong

Amva4newphysics.wordpress.com

github.com/GilesStrong

INTRODUCTION

ML REQUIREMENTS AT ANALYSIS LEVEL

- Example: typical event-level classifier in a search
- Train algorithm multiple times at short notice = train time < I day
 - Cannot assume GPU access, must work well on CPU
- Application time depends on dataset size and number of systematics (run multiple predictions per event)
 - Typically want to process entire dataset in under a few hours
 - Cannot assume GPU access, must work well on CPU

HIGGS ML SOLUTIONS

- 2014 <u>Higgs ML Kaggle competition</u> simulated a typical data-analysis level application of ML in HEP
- Entrants included both physicists and professional data-scientists
 - Strong competition
- Top performance requires:
 - 13h using an expensive GPU
 - I I0m accounting for hardware improvement
 - Or 36h on an 8-core CPU instance
- Most analysis-level researchers just have a laptop or scheduled access to shared GPUs.

	$1^{\rm st}$ place	2 nd place	$3^{\rm rd}$ place
Method	70 DNNs	Many BDTs	108 DNNs
Train-time (GPU)	$12\mathrm{h}$	N/A	N/A
Train-time (CPU)	$35\mathrm{h}$	48 h	$3\mathrm{h}$
Test-time (GPU)	1 h	N/A	N/A
Test-time (CPU)	???	???	$20\mathrm{min}$
Score	3.80581	3.78913	3.78682

QUESTION

- Have there been any new methods in deep learning since 2014 which when applied to a HEP search:
 - Improve sensitivity to signal?
 - Reduce training and application time?
 - Have a lower hardware requirement?
- Let's use the HiggsML challenge as a benchmark and see!

HIGGS ML DATASET

- ATLAS 2012 MC full simulation with Geant 4
- Signal: Higgs to di-tau
- Backgrounds: $Z \rightarrow \tau \underline{\tau}$, $t\underline{t}$, and W decay
- Events selected for the semi-leptonic channel: $\tau\tau \rightarrow (e \mid \mu) + \tau_h$
- 250,000 labelled events for training, 550,000 unlabelled events for testing
- 31 features:
 - 3-momenta of main final-states and upto two jets (p_{τ} ordered)
 - High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera

CHALLENGE AIM

- Solutions must predict signal or background for each test event
- Solutions ranked via their <u>Approximate Median Significance</u>
 - Quick, accurate, analytical approximation of full discovery significance
 - s = sum of weights of true positive events (signal events determined by the solution to be signal)
 - b = weights of false positive events (backgrounds events determined by the solution to be signal)
 - $b_r = \text{constant term (set to 10 for the challenge)}$

$$AMS = \sqrt{2(s+b+b_r)\log\left(\left(1+\frac{s}{b+b_r}-s\right)\right)}$$

7

BASELINE MODEL

- The basic classifier is:
 - 4-layer 100 neuron, fully-connected network, with ReLU activations
 - Adam to minimise the weighted binary cross-entropy of event class predictions
 - Learning rate found using LR range test (Smith <u>2015</u> & <u>2018</u>, see backups)
- An ensemble of 10 such classifiers is trained
- Baseline achieves metric-score of 3.664±0.007

METHOD TESTING

Presented in order tested, but some methods are skipped to save time

CATEGORICAL ENTITY EMBEDDING

- <u>Guo & Berkhahn 2016</u>: a method of inputting categorical features without I-hot encoding
- Gives a small improvement, but there's only one categorical feature in the dataset (number of jets)
- See paper or backups for details

DATA AUGMENTATION

- Copy data by exploiting invariances between input and target:
 - E.g. can flip, zoom, rotate, & adjust image pixels but object does not change class
- Applied at train-time to artificially increase dataset size e.g <u>Krizhevsky et al. 2012</u>
- Applied at test-time to get multiple predictions per datapoint and average

DATA AUGMENTATION

- At the CMS and ATLAS detectors at the LHC, can exploit the azimuthal and longitudinal invariance of events:
 - Rotate in ϕ , flip in η , and flip in either x or y axis
- Alternative is to remove symmetries by setting common alignment for events
 - E.g. rotate & flip events such that leptons are always at ϕ = 0, η > 0, and taus are always at ϕ > 0
- Using data augmentation results in:
 - Large performance improvement
 - Very large increase in train & application time (but still reasonable to use)

SKIPPED METHODS

- Cosine annealed LR schedule (<u>Loshchilov and Hutter, 2016</u>)
 - Slight improvement in performance, but replaced with Tcycle (coming up soon)
- Swish activation function (<u>Ramachandran et al., 2017</u>)
 - Small performance improvement
- Advanced ensembling: <u>Snapshot ensembling</u>, <u>Fast geometric ensembling</u>, <u>Stochastic weight averaging</u>
 - SWA gave slight improvement in performance, but replaced with Tcycle (coming up soon)

ICYCLE SCHEDULE

- Smith 2018 introduces the Tcycle schedule
 - Adjusts the learning rate and momentum of the optimiser during training
 - Original paper used linear interpolation
 - <u>FastAl</u> found a cosine interpolation was better, as illustrated
- Reduces training time by over 50% with no change in performance!

DENSE CONNECTIONS

- Huang et al. 2016 presents Densenet, a CNN architecture in which channel-wise concatenation is used to pass all the feature-maps from all previous layers to all subsequent layers
- Information is never 'lost', i.e. each layer has access to all the original inputs and weights have more direct gradient flow
- Reduces required number of free-parameters and enables 'deep supervision'

DENSE CONNECTIONS

- DNNs here are not convolutional
 - Instead use width-wise concatenation of previous hidden states
- Places less reliance on exact settings of width and depth of network layers by protecting against over-parametrisation
 - Reduced layer widths to number of inputs
 (33)
 - Increased number of layers to 6 (was 4)
 - Reduces number of free parameters by a third
- Provides:
 - Small performance improvement
 - Small increase in train time

TESTING

- Model fixed and private AMS computed
 - Solution here matches Ist-place performance
- Hardware for mine:
 - GPU: Nvidia 1080 Ti
 - CPU: Intel i7-8559U (MacBook Pro 2018)
 - More hardware timings in backups
- Accounting for difference in GPU (Titan)
 - → 1080 Ti) processing power, 1st-place:
 - Trains in 100 minutes (mine 8 minutes = 92% quicker on GPU)
 - Tests in 8 minutes (mine 15 seconds = 97% quicker on GPU)
 - N.B. Doesn't include software changes (LISP→PyTorch)

	Our solution	1^{st} place	$2^{\rm nd}$ place	3 rd place
Method	10 DNNs	70 DNNs	Many BDTs	108 DNNs
Train-time (GPU)	8 min	$12\mathrm{h}$	N/A	N/A
Train-time (CPU)	$14\mathrm{min}$	$35\mathrm{h}$	48 h	$3 \mathrm{h}$
Test-time (GPU)	$15\mathrm{s}$	1 h	N/A	N/A
Test-time (CPU)	$3\mathrm{min}$???	???	$20\mathrm{min}$
Score	3.806 ± 0.005	3.80581	3.78913	3.78682

IMPROVEMENT CONTRIBUTIONS

SUMMARY

SUMMARY

- Algorithms can be further improved by staying up-to-date with the field of deep-learning
- HiggsML study showed new methods:
 - Bring genuine improvements in performance
 - Reduce train and application time
 - Reduce hardware requirements: can run powerful algorithms on a laptop CPU
- Solutions developed in <u>LUMIN</u> (<u>PyTorch</u> wrapper)
 - Study code
- Accepted manuscript, Preprint (no watermark)

BACKUPS

- "[The Learning Rate] is often the single most important hyperparameter and one should always make sure that it has been tuned" Bengio, 2012
- Previously this required running several different trainings using a range of LRs
- The LR range test (Smith 2015 & 2018) can quickly find the optimum LR using a single epoch of training

. Starting from a tiny LR (~1e-7), the LR is gradually increased after each minibatch

Loss

1. Starting from a tiny LR (~le-7), the LR is gradually increased after each minibatch

2. Eventually the network starts training (loss decreases)

- Starting from a tiny LR (~Ie-7), the LR is gradually increased after each minibatch
- 2. Eventually the network starts training (loss decreases)
- 3. At a higher LR the network can no longer train (loss plateaus), and eventually the network diverges (loss increases)

- The optimum LR is the highest LR at which the loss is still decreasing
- Further explanation in this <u>lesson</u>

CATEGORICAL ENTITY EMBEDDING

- Categorical features = features with discrete values and no numerical comparison
- Normal to 1-hot encode as Boolean vector (Monday → 1000000)
- But potentially means a large number of extra inputs to NN (day of year = 365 inputs)
- Guo & Berkhahn 2016 learns lookup tables which provide a compact, but rich, representation of categorical values as vector of floats (Monday → 0.3,0.9,0.4,0.7)

CATEGORICAL ENTITY EMBEDDING

- Embedding values start from random initialisation
- Receive gradient during backpropagation and are learnt just like any other network parameter
- Embedding of the number of jets in each event gives:
 - Moderate performance improvement $3.664\pm0.007\rightarrow3.71\pm0.02$
 - Small increase in train & application time

SGD WITH WARM RESTARTS_{Can change cycle length}

- Adjusting the LR during training is a common technique for achieving better performance
- Normally this involves decreasing the LR once the validation loss becomes flat
- Loshchilov and Hutter <u>2016</u> instead suggests that the LR should be decay as a cosine with the schedule restarting once the LR reaches zero
 - cosine annealing
- Huang et al. 2017 later suggests that the discontinuity allows the network to discover multiple minima in the loss surface

SGD WITH WARM RESTARTS

- Used cosine annealing and doubled the cycle-length with each restart
- Results in
 - Small performance improvement 3.79 ±0.01→3.80±0.02
 - Very large increase in train time (but still reasonable to use)

SWISH ACTIVATION FUNCTION

- The Swish activation function (<u>Ramachandran et al., 2017</u>) found via reinforcement learning
 - Provides a region of negative gradient
 - Shown to provide incremental improvement over other activation functions
- Provides:
 - Small performance improvement 3.80 ±0.02→3.81±0.02
 - Small increase in train and application time
- N.B. Had previously tested SELU (Klambauer et al., <u>2017</u>), but Swish performed better

ADVANCED ENSEMBLING

- Tested several methods:
 - Huang et al. <u>2017</u> (Snapshot ensembling (SSE))
 - Produces ensembles in a single training
 - Garipov et al. <u>2018</u> (Fast geometric ensembling (FGE))
 - Produces larger ensembles in a single training
 - Izmailov et al. 2018 (Stochastic weight averaging (SWA))
 - Approximates FGE in a single model
- SWA provided reduced training time and replaced cosine annealing
 - Was then replaced by I cycle (coming up next)
 - See Sec. 4.8 of <u>paper</u> for details

METRIC EVOLUTION

MVAC & MMVA were two other optimisation metrics, but were known to be optimistic

33

TRAINING TIME

TESTING TIME

LUMIN

- LUMIN is a PyTorch wrapper library that provides implementations for these methods
- Also includes other useful methods & classes for working with HEP data and columnar data in general, and more
 - E.g. recent update adds RNNs, CNNs, and a few graph-nets
- Links:
 - Docs
 - Github
 - Colab examples
 - <u>lssues</u> contributions welcome!

