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INTRODUCTION
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ML REQUIREMENTS AT ANALYSIS LEVEL

• Example: typical event-level classifier in a search

• Train algorithm multiple times at short notice = train time < 1 day
• Cannot assume GPU access, must work well on CPU

• Application time depends on dataset size and number of systematics (run 
multiple predictions per event)
• Typically want to process entire dataset in under a few hours

• Cannot assume GPU access, must work well on CPU
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HIGGS ML SOLUTIONS
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• 2014 Higgs ML Kaggle competition 
simulated a typical data-analysis level 
application of ML in HEP

• Entrants included both physicists and 
professional data-scientists

• Strong competition
• Top performance requires:

• 13h using an expensive GPU
• 110m accounting for 

hardware improvement
• Or 36h on an 8-core CPU instance

• Most analysis-level researchers just have a 
laptop or scheduled access to shared 
GPUs.

https://www.kaggle.com/c/higgs-boson


QUESTION

• Have there been any new methods in deep learning since 2014 which 
when applied to a HEP search:
• Improve sensitivity to signal?

• Reduce training and application time?

• Have a lower hardware requirement?

• Let’s use the HiggsML challenge as a benchmark and see!
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HIGGS ML DATASET
• ATLAS 2012 MC full simulation with Geant 4

• Signal: Higgs to di-tau

• Backgrounds: Z→ 𝜏𝜏, tt, and W decay

• Events selected for the semi-leptonic channel: 𝜏𝜏 → (e | 𝜇) + 𝜏h

• 250,000 labelled events for training, 550,000 unlabelled events for testing

• 31 features:
• 3-momenta of main final-states and upto two jets (pT ordered)

• High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera 6

http://opendata.cern.ch/record/328


CHALLENGE AIM

• Solutions must predict signal or background for each test event

• Solutions ranked via their Approximate Median Significance
• Quick, accurate, analytical approximation of full discovery significance

• s = sum of weights of true positive events (signal events determined by the solution 
to be signal)

• b = weights of false positive events (backgrounds events determined by the 
solution to be signal)

• br = constant term (set to 10 for the challenge)
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https://arxiv.org/abs/1007.1727


BASELINE MODEL

• The basic classifier is:
• 4-layer 100 neuron, fully-connected network, with ReLU activations

• Adam to minimise the weighted binary cross-entropy of event class predictions

• Learning rate found using LR range test (Smith 2015 & 2018, see backups)

• An ensemble of 10 such classifiers is trained

• Baseline achieves metric-score of 3.664±0.007
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https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820


METHOD TESTING
Presented in order tested, but some methods are skipped to save time
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CATEGORICAL ENTITY EMBEDDING

• Guo & Berkhahn 2016 : a method of inputting categorical features without 
1-hot encoding

• Gives a small improvement, but there’s only one categorical feature in the 
dataset (number of jets)

• See paper or backups for details
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https://arxiv.org/abs/1604.06737


DATA AUGMENTATION

• Copy data by exploiting invariances 
between input and target:

• E.g. can flip, zoom, rotate, & adjust image 
pixels but object does not change class

• Applied at train-time to artificially increase 
dataset size e.g Krizhevsky et al. 2012

• Applied at test-time to get multiple 
predictions per datapoint and average
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


DATA AUGMENTATION
• At the CMS and ATLAS detectors at the 

LHC, can exploit the azimuthal and 
longitudinal invariance of events:

• Rotate in 𝜙, flip in 𝜂, and flip in either x or 
y axis

• Alternative is to remove symmetries by 
setting common alignment for events

• E.g. rotate & flip events such that leptons 
are always at 𝜙 = 0, 𝜂 > 0, and taus are 
always at 𝜙 > 0

• Using data augmentation results in:
• Large performance improvement 

• Very large increase in train & application 
time (but still reasonable to use)
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SKIPPED METHODS

• Cosine annealed LR schedule (Loshchilov and Hutter, 2016)
• Slight improvement in performance, but replaced with 1cycle (coming up soon)

• Swish activation function (Ramachandran et al., 2017)
• Small performance improvement

• Advanced ensembling: Snapshot ensembling, Fast geometric ensembling, 
Stochastic weight averaging
• SWA gave slight improvement in performance, but replaced with 1cycle (coming up 

soon)
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https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407


1CYCLE SCHEDULE

• Smith 2018 introduces the 1cycle schedule
• Adjusts the learning rate and momentum 

of the optimiser during training
• Original paper used linear interpolation
• FastAI found a cosine interpolation was 

better, as illustrated

• Reduces training time by over 50% with 
no change in performance!
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Initial warm-up 
phase

Learning phase,
High LR stabilised 
by low 
momentum Convergence 

phase

https://arxiv.org/abs/1803.09820
https://www.fast.ai/


DENSE CONNECTIONS

• Huang et al. 2016 presents Densenet, a 
CNN architecture in which channel-wise 
concatenation is used to pass all the 
feature-maps from all previous layers to all 
subsequent layers

• Information is never ‘lost’, i.e. each layer 
has access to all the original inputs and 
weights have more direct gradient flow

• Reduces required number of 
free-parameters and enables ‘deep 
supervision’
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https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1409.5185


DENSE CONNECTIONS
• DNNs here are not convolutional

• Instead use width-wise concatenation of 
previous hidden states

• Places less reliance on exact settings of 
width and depth of network layers by 
protecting against over-parametrisation

• Reduced layer widths to number of inputs 
(33)

• Increased number of layers to 6 (was 4)
• Reduces number of free parameters by a 

third

• Provides:
• Small performance improvement 
• Small increase in train time

Hidden + Activation layer

+

Hidden + Activation layer

+ 16

Concatenation



TESTING
• Model fixed and private AMS computed

• Solution here matches 1st-place 
performance

• Hardware for mine:
• GPU: Nvidia 1080 Ti
• CPU: Intel i7-8559U (MacBook Pro 2018)
• More hardware timings in backups

• Accounting for difference in GPU (Titan 
→ 1080 Ti) processing power, 1st-place:

• Trains in 100 minutes (mine 8 minutes = 
92% quicker on GPU)

• Tests in 8 minutes (mine 15 seconds = 
97% quicker on GPU)

• N.B. Doesn’t include software changes 
(LISP→PyTorch)
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IMPROVEMENT CONTRIBUTIONS
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Relative contributions 
improvements to 
Private AMS over 
single baseline model



SUMMARY
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SUMMARY
• Algorithms can be further improved by staying up-to-date with the field of 

deep-learning
• HiggsML study showed new methods:

• Bring genuine improvements in performance

• Reduce train and application time

• Reduce hardware requirements: can run powerful algorithms on a laptop CPU

• Solutions developed in LUMIN (PyTorch wrapper)
•  Study code 

• Accepted manuscript, Preprint (no watermark) 20

https://lumin.readthedocs.io/en/stable/
https://pytorch.org/
https://github.com/GilesStrong/HiggsML_Lumin
https://iopscience.iop.org/article/10.1088/2632-2153/ab983a
https://arxiv.org/abs/2002.01427


BACKUPS
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LEARNING RATE FINDER

• “[The Learning Rate] is often the single most important hyperparameter 
and one should always make sure that it has been tuned” - Bengio, 2012

• Previously this required running several different trainings using a range of 
LRs

• The LR range test (Smith 2015 & 2018) can quickly find the optimum LR 
using a single epoch of training
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https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820


LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch
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LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch

2. Eventually the network starts 
training (loss decreases)
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LEARNING RATE FINDER

1. Starting from a tiny LR (~1e-7), 
the LR is gradually increased after 
each minibatch

2. Eventually the network starts 
training (loss decreases)

3. At a higher LR the network can 
no longer train (loss plateaus), 
and eventually the network 
diverges (loss increases) 25



LEARNING RATE FINDER

• The optimum LR is the highest LR at which the loss is still decreasing

• Further explanation in this lesson
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https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s


CATEGORICAL ENTITY EMBEDDING
• Categorical features = features with 

discrete values and no numerical 
comparison

• Normal to 1-hot encode as Boolean 
vector (Monday → 1000000)

• But potentially means a large number of 
extra inputs to NN (day of year = 365 
inputs)

• Guo & Berkhahn 2016 learns lookup 
tables which provide a compact, but rich, 
representation of categorical values as 
vector of floats (Monday → 
0.3,0.9,0.4,0.7) 27

https://arxiv.org/abs/1604.06737


CATEGORICAL ENTITY EMBEDDING

• Embedding values start from random 
initialisation

• Receive gradient during backpropagation 
and are learnt just like any other network 
parameter

• Embedding of the number of jets in each 
event gives:

• Moderate performance improvement 
3.664±0.007→3.71±0.02

• Small increase in train & application time 
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SGD WITH WARM RESTARTS
• Adjusting the LR during training is a 

common technique for achieving better 
performance

• Normally this involves decreasing the LR 
once the validation loss becomes flat

• Loshchilov and Hutter 2016 instead 
suggests that the LR should be decay as a 
cosine with the schedule restarting once 
the LR reaches zero

• cosine annealing

• Huang et al. 2017 later suggests that the 
discontinuity allows the network to 
discover multiple minima in the loss 
surface
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Lower figure - Huang et al., 2017, arXiv:1704.00109
 

Can change cycle length 
during training

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1704.00109


SGD WITH WARM RESTARTS

• Used cosine annealing and doubled the 
cycle-length with each restart

• Results in
• Small performance improvement 3.79

±0.01→3.80±0.02 
• Very large increase in train time (but still 

reasonable to use)

30

Warm restarts



SWISH ACTIVATION FUNCTION
• The Swish activation function 

(Ramachandran et al., 2017) found via 
reinforcement learning

• Provides a region of negative gradient 
• Shown to provide incremental 

improvement over other activation 
functions

• Provides:
• Small performance improvement 3.80

±0.02→3.81±0.02 
• Small increase in train and application 

time

• N.B. Had previously tested SELU 
(Klambauer et al., 2017) , but Swish 
performed better
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https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1706.02515


ADVANCED ENSEMBLING
• Tested several methods:

• Huang et al. 2017 (Snapshot ensembling (SSE))
• Produces ensembles in a single training

• Garipov et al. 2018 (Fast geometric ensembling (FGE))
• Produces larger ensembles in a single training

• Izmailov et al. 2018 (Stochastic weight averaging (SWA))
• Approximates FGE in a single model

• SWA provided reduced training time and replaced cosine annealing
• Was then replaced by 1cycle (coming up next)

• See Sec. 4.8 of paper for details
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https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2002.01427


METRIC EVOLUTION
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MAPA was the 
main 
optimisation 
metric

Overall 
Public|Private  
AMSs only 
checked at end

MVAC & MMVA 
were two other 
optimisation metrics, 
but were known to 
be optimistic



TRAINING TIME
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TESTING TIME
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LUMIN
• LUMIN is a PyTorch wrapper library that 

provides implementations for these 
methods

• Also includes other useful methods & 
classes for working with HEP data and 
columnar data in general, and more

• E.g. recent update adds RNNs, CNNs, 
and a few graph-nets

• Links:
• Docs
• Github
• Colab examples
• Issues -  contributions welcome!

https://lumin.readthedocs.io/en/stable/
https://github.com/GilesStrong/lumin
https://github.com/GilesStrong/lumin#examples
https://github.com/GilesStrong/lumin/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc

