

ALICE measurements of $p-\Xi^-$ and $p-\Omega^-$ interactions and constraints on lattice QCD

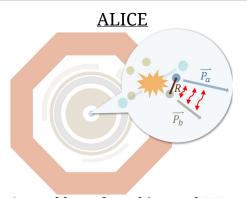
Otón Vázquez Doce (TUM) for the ALICE Collaboration

ICHEP 2020 | PRAGUE (online) 29 July 2020

<u>LHC</u>

Small collision systems:

- pp 13 TeV
- p-Pb 5.02 TeV
- \Rightarrow particle sources below 1 fm


LHC

Small collision systems:

- pp 13 TeV
- p-Pb 5.02 TeV

 \Rightarrow particle sources below 1 fm

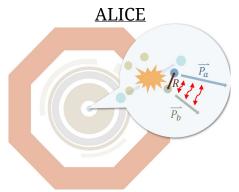
Central barrel tracking and PID:

- Inner Tracking System
- Time Projection Chamber
- Time Of Flight

Reconstruction of hyperons:

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- $\Omega \rightarrow \Lambda K$

Study of **p-\Xi**, **p-\Omega** pairs


LHC

Small collision systems:

- pp 13 TeV
- p-Pb 5.02 TeV

 \Rightarrow particle sources below 1 fm

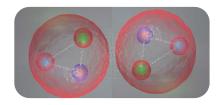
Central barrel tracking and PID:

- Inner Tracking System
- Time Projection Chamber
- Time Of Flight

Reconstruction of hyperons:

- Λ→pπ
- $\Xi \rightarrow \Lambda \pi$
- Ω→ΛΚ

Study of \mathbf{p} - $\mathbf{\Xi}^{-}$, \mathbf{p} - $\mathbf{\Omega}^{-}$ pairs

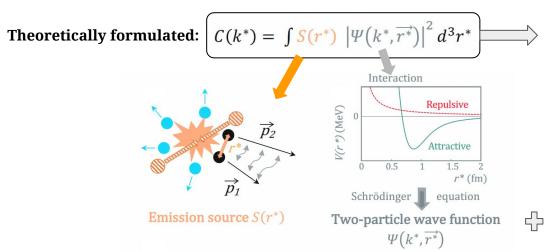

<u>Hadron physics</u>

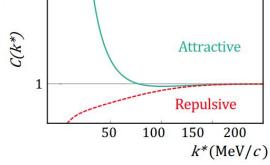
<u>Interaction of baryons with strange content:</u>

- First principle calculations: Recent developments by lattice QCD at the physical point
- Models are constrained by data with limited precision, in contrast with N-N interactions

Correlation studies with ALICE:

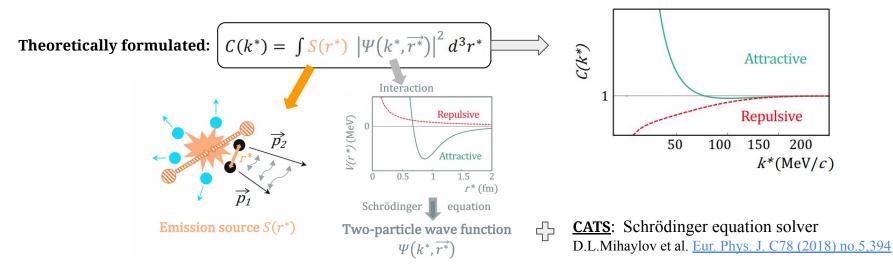
- **Precise data** in the low momentum range, **not** accessible with other approaches.
- Consequences for: appearance of hyperons in neutron stars, existence of strange di-baryons.


Recent publications: arXiv:2004.08018 [nucl-ex] arXiv:2005.11495 [nucl-ex]



Two-particle correlations as a tool for studying h-h interactions

Based on the correlation function $C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$, with $k^* = |\vec{p_2}^* - \vec{p_1}^*|/2$ and $p_1^* = -p_2^*$


CATS: Schrödinger equation solver D.L.Mihaylov et al. Eur. Phys. J. C78 (2018) no.5,394

Two-particle correlations as a tool for studying h-h interactions

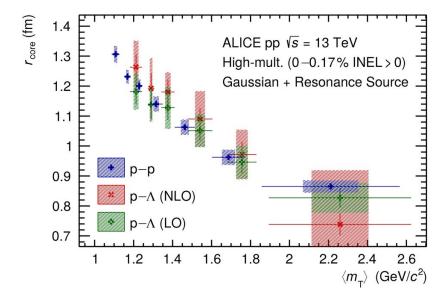
Based on the correlation function
$$C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$$
, with $k^* = |\vec{p_2}^* - \vec{p_1}^*|/2$ and $p_1^* = -p_2^*$

Experimentally obtained: $C(k^*) = \xi(k^*) \otimes$

Normalization, resolution effects, residual correlations.

Setting the source

A. Mathis, "07. Heavy Ions", 31-July, 8:48



"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., <u>arXiv:2004.08018 [nucl-ex]</u> (submitted to PLB)

Ansatz: similar source for all baryon-baryon pairs in small collision systems

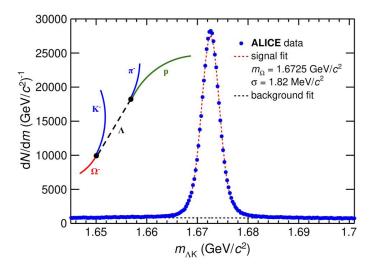
Source characteristics **determined via femtoscopic analysis of p-p correlations**

- Transverse mass m_T dependence due to collective effects
- Effect of strong short-lived resonances computed for all hadrons

The p- Ξ -, p- Ω - sources **determined given the pair** $< m_T >$:

p-Ξ⁻:
$$< m_{\rm T} > = 1.9 \text{ GeV}/c \implies r_{\rm core} = 0.92 \pm 0.05 \text{ fm}$$

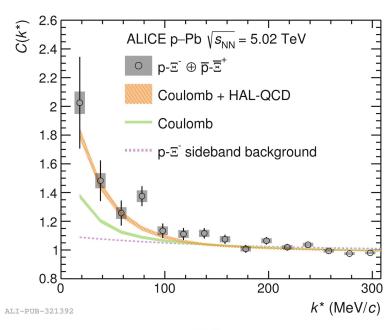
p-Ω⁻: $< m_{\rm T} > = 2.2 \text{ GeV}/c \implies r_{\rm core} = 0.86 \pm 0.06 \text{ fm}$


Detecting hyperons with ALICE

Enhanced production of strange hadrons in high multiplicity (HM) pp collisions <u>ALICE Coll. Nature Physics 13, 535 (2017)</u>

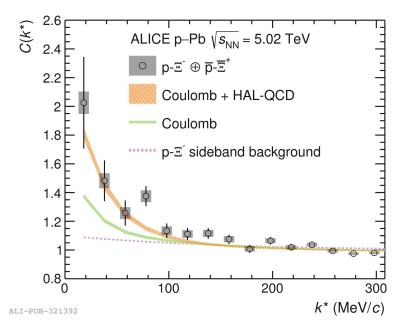
Weak decay reconstruction in HM pp collisions:

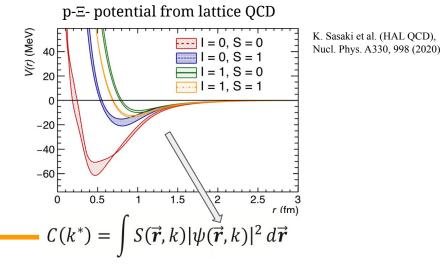
- Purity of Ξ selection 92%, Ω selection 95%
- p- Ξ pairs: 5.·10⁶ (37·10³ pairs for k* < 200 MeV/c)
- p- Ω pairs: 0.6·10⁶ (4·10³ pairs for k* < 200 MeV/c)



p-Ξ⁻ in p-Pb at 5.02 TeV

"First Observation of an Attractive Interaction between a Proton and a Cascade Baryon", ALICE Coll., Phys. Rev. Lett. 123, (2019) 112002

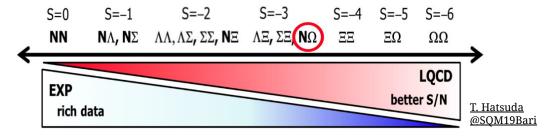

 $r_0 = 1.427 \pm 0.007 \text{ (stat.)} ^{+0.001}_{-0.014} \text{ (syst.) fm}$ (-20%, resonances)


p-E⁻ in p-Pb at 5.02 TeV

"First Observation of an Attractive Interaction between a Proton and a Cascade Baryon", ALICE Coll., Phys. Rev. Lett. 123, (2019) 112002

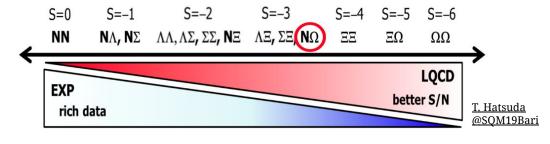
 $r_0 = 1.427 \pm 0.007 \text{ (stat.)} ^{+0.001}_{-0.014} \text{ (syst.) fm}$ (-20%, resonances)

Lattice OCD:

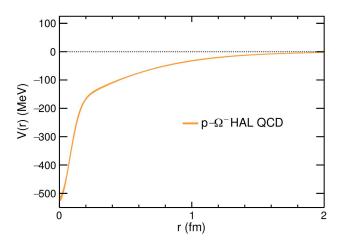

 U_{Ξ} single particle potential slightly repulsive (6 MeV) in pure neutron matter (NS)

Repulsive interaction $\Rightarrow \Xi$ pushed to high densities \Rightarrow stiffer EoS, higher masses

Lattice QCD with S=-3

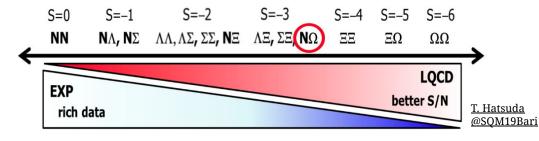


Lattice QCD with S=-3

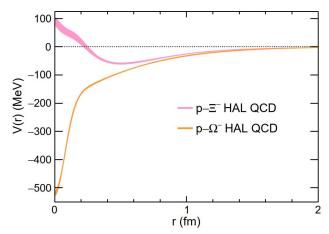


- **HAL QCD p-\Omega^- potential** with physical quark masses o $m_{\pi} = 146 \text{ MeV/c}^2$, $m_{K} = 525 \text{ MeV/c}^2$
- Predicts the formation of a **p-\Omega** di-baryon.

	HAL QCD: $p\Omega^-$ binding energy
Strong interaction	1.5 MeV
Strong + Coulomb	2.5 MeV


T. Iritani et al., PLB792 (2019) 284.

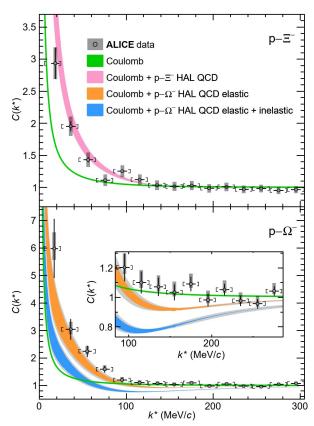
Lattice QCD with S=-3



- **HAL QCD p-\Omega^- potential** with physical quark masses o $m_{\pi} = 146 \text{ MeV/c}^2$, $m_{K} = 525 \text{ MeV/c}^2$
- Predicts the formation of a \mathbf{p} - $\mathbf{\Omega}$ \mathbf{di} -baryon.

	HAL QCD: $p\Omega^-$ binding energy		
Strong interaction	1.5 MeV		
Strong + Coulomb	2.5 MeV		

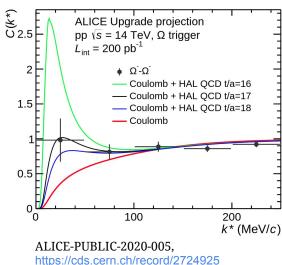
T. Iritani et al., Phys. Lett. B792 (2019) 284.


- Substantial differences for r < 1fm
- $p-\Omega^-$ attractive interaction at all distances

$p-\Xi^{-}$ and $p-\Omega^{-}$ in pp at 13 TeV

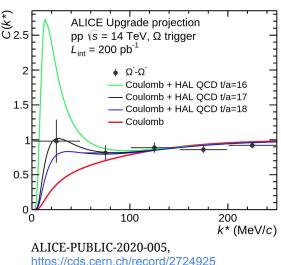
"A new laboratory to study hadron–hadron interactions", ALICE Coll., arXiv:2005.11495 [nucl-ex] (submitted to Nature)

- Evidence of **attractive** strong **interaction** for both $p-\Xi^-$ and $p-\Omega^-$ systems
- Data show a **p-\Omega** correlation function enhanced with respect to p- Ξ
- Precise p- Ω ALICE data provide first **constraint** for lattice QCD calculations:
 - Inelastic channels not accounted for quantitatively within the lattice.
 - The data do not follow the depletion in the correlation function expected due to the p- Ω bound state
- The method can be extended:
 - Search for bound state: study of systems with slightly larger sources
 - Inelastic channels: measurements of Λ - Ξ and Σ^0 - Ξ correlations


p-E⁻: $r = 1.02 \pm 0.05$ fm **p-Ω**⁻: $r = 0.95 \pm 0.06$ fm

Outlook

- The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm. Correlation data complements/substitutes other approaches.
- First principle calculations of interactions involving hyperons can be tested. Necessary to compute reliable Equations of State and study the existence of strange di-baryons.
- Run 3 and 4 data will provide the possibility of carrying out new and differential studies and investigate 3-body interactions.

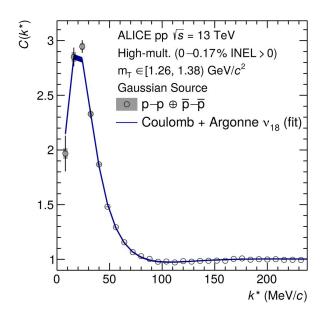


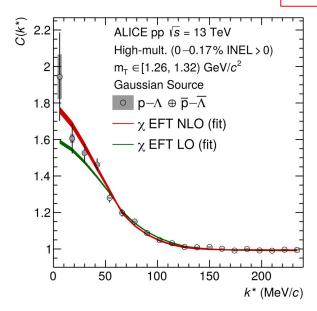
Outlook

- The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm. Correlation data complements/substitutes other approaches.
- First principle calculations of interactions involving hyperons can be tested. Necessary to compute reliable Equations of State and study the existence of strange di-baryons.
- Run 3 and 4 data will provide the possibility of carrying out new and differential studies and investigate 3-body interactions.

THANK YOU

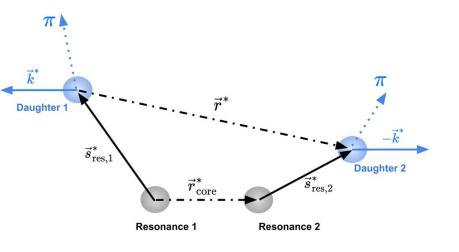
https://cds.cern.ch/record/2724925

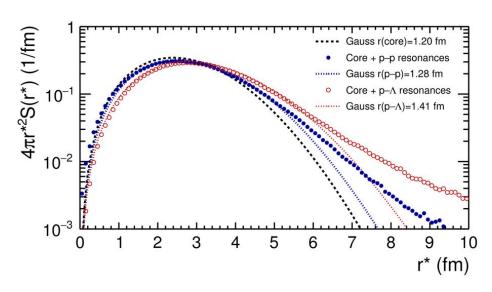

Backup



"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., <u>arXiv:2004.08018 [nucl-ex]</u> (submitted to PLB)

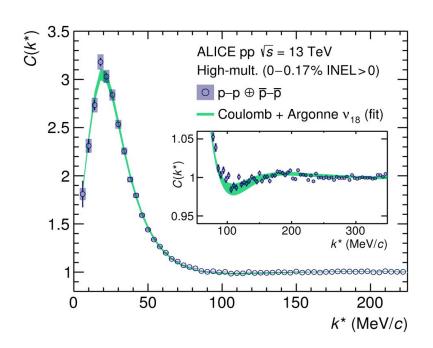
A. Mathis, "07.Heavy Ions", 31-July, 8:48

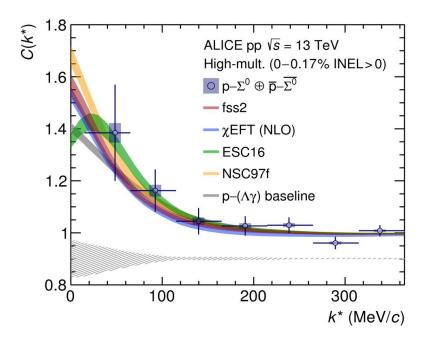




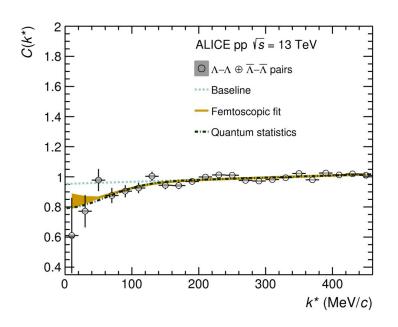
"Search for a common baryon source in high-multiplicity pp collisions at the LHC", ALICE Coll., <u>arXiv:2004.08018 [nucl-ex]</u> (submitted to PLB)

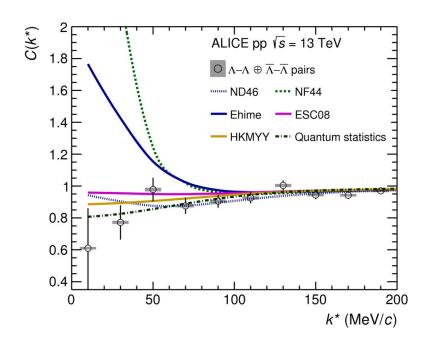
A. Mathis, "07. Heavy Ions", 31-July, 8:48



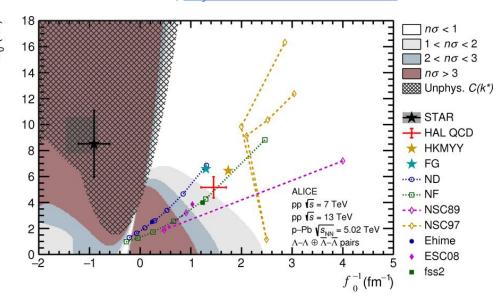


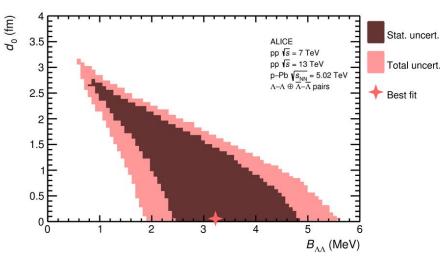
"Investigation of the p- Σ^0 interaction via femtoscopy in pp collisions", ALICE collaboration, Phys. Lett. B805 (2020) 135419





"Study of the Λ - Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC" ALICE collaboration, Phys. Lett. B 797 (2019) 134822





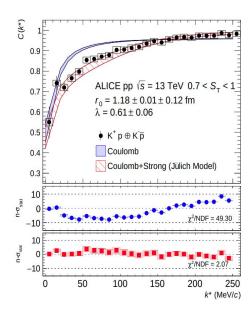
"Study of the Λ - Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC" ALICE collaboration, Phys. Lett. B 797 (2019) 134822

Test agreement between data-Lednicky model (number of sigmas)

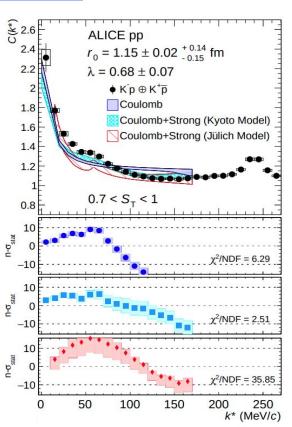
Small source size limits the prediction power of the Lednicky model

H-Dibaryon binding energy upper limit

$$B_{\Lambda\Lambda} = \frac{1}{m_{\Lambda}d_0^2} \cdot \left(1 - \sqrt{1 + \frac{2d_0}{f_0}}\right)$$


S. Gonbgyo et al., PRL 120(2018) 212001

P. Naidon and S. Endo, Rept. Prog. Phys. 80 (2017) 056001

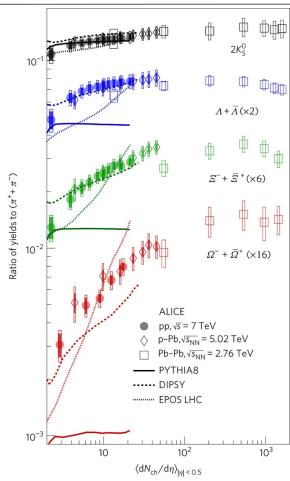


"Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC" ALICE collaboration, Phys. Rev. Lett. 124 (2020) 092301

Jülich meson exchange model Eur.Phys.J. A47 (2011) 18

Kyoto Model: Phys. Rev. C93 no. 1, (2016) 015201 Jülich Model: Nucl. Phys. A981 (2019)

Bump close to the K⁰n threshold (58 MeV/c in CM frame): First experimental evidence of the opening of the K⁰n isospin breaking channel


Coupled channel effect

$$M(K^-p) + 5 \operatorname{MeV} = M(n\bar{K}^0)$$

$$\hline \begin{array}{c|c} \mathbf{n} & \mathbf{p} \\ \hline \bar{K}^0 & K^- \end{array}$$

Enhanced production of multi-strange hadrons in high multiplicity pp collisions <u>ALICE Coll. Nature Physics volume 13, 535 (2017)</u>

D.L.Mihaylov et al. Eur. Phys. J. C78 (2018) no.5,394

Source

Numerically solve

"Exact" solution

Wave function

Potential

Full

the Schrödinger eq.

Provides a exact solution computing the correlation function from the model given a local potential or wave function form.

 $\oplus \lambda_1 C_1$

 Contributions from weak decays and impurities determined from fits to experimental data

- Residual correlations are modelled (weak decays) or obtained from data (impurities)
- The correlation function is corrected for **residual** contributions and finite resolution effects

Correlation function

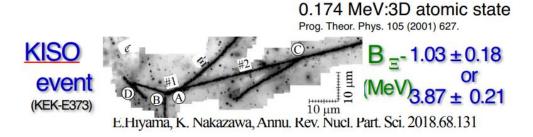
Correlation of interest

 $C_{exp}(k^*) = \lambda_0 C_0$

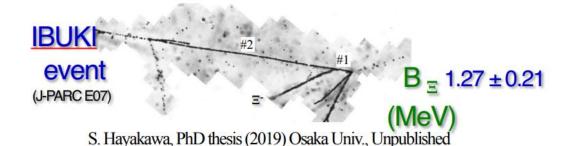
Contributions from impurities, secondaries etc.

Experiment

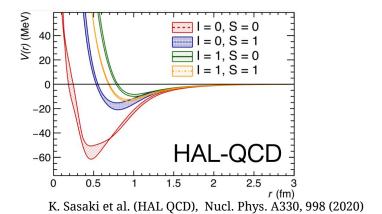
Contributions from residual correlations and impurities


p–Ξ ⁻					
Pair	λ [%]	Pair	λ [%]	Pair	λ [%]
p–Ξ ⁻	58.3	$p_{\Lambda} \! - \! \Xi_{\Omega}^-$	0.08	\tilde{p} – $\Xi_{\Xi^0(1530)}^-$	0.09
$p-\Xi_{\Xi^{-}(1530)}^{-}$	6.5	$egin{array}{l} p_{\Lambda}-\Xi_{\Omega}^{-} \ p_{\Sigma^{+}}-\Xi^{-} \end{array}$	1.1		0.00
$p-\Xi_{\Xi^{-}(1530)}^{-}$ $p-\Xi_{\Xi^{0}(1530)}^{-}$ $p-\Xi_{\Omega}^{-}$ $p_{\Lambda}-\Xi^{-}$	12.9	$p_{\Sigma^{+}}^{-}$ $=$ $\Xi_{\Xi^{-}(1530)}^{-}$	0.12	$egin{aligned} & ilde{p} - \Xi_{\Omega}^{-} \ & p - \widetilde{\Xi}^{-} \ & p_{\Lambda} - \widetilde{\Xi}^{-} \end{aligned}$	7.3
$p\!\!=\!\!\Xi_{\Omega}^-$	0.6	$p_{\Sigma^+} - \Xi_{\Xi^0(1530)}^- \ p_{\Sigma^+} - \Xi_{\Omega}^-$	0.24	$p_{\Lambda}\!\!-\!\!\tilde{\Xi}^-$	1.0
$p_{\Lambda}\!\!-\!\!\Xi^-$	8.4	$p_{\Sigma^+} \! - \! \Xi_{\Omega}^-$	0.01	$egin{array}{l} p_{\Sigma^+} - \widetilde{\Xi}^- \ \widetilde{p} - \widetilde{\Xi}^- \end{array}$	0.14
$p_{\Lambda} \! - \! \Xi_{\Xi^{-}(1530)}^{-}$	0.93	<u> </u>	0.39	$ ilde{ ilde{p}}$ $= ilde{\Xi}^-$	0.05
p_{Λ} - $\Xi_{\Xi^{-}(1530)}^{-}$ p_{Λ} - $\Xi_{\Xi^{0}(1530)}^{-}$	1.87	\tilde{p} – $\Xi_{\Xi^{-}(1530)}^{-}$	0.04		

Pair	λ [%]
p – Ω^-	79.0
$p_{\Lambda}\!\!-\!\!\Omega^-$	9.9
$p_{\Sigma^+}\!\!-\!\!\Omega^-$	5.1
$\tilde{p}\!\!-\!\!\Omega^-$	0.9
$p\!\!-\!\! ilde{\Omega^-}$	4.2
p_{Λ} – $ ilde{\Omega^-}$	0.6
p_{Σ^+} – $ ilde{\Omega^-}$	0.3
$ ilde{ ilde{p}}$ $- ilde{\Omega}^-$	0.1

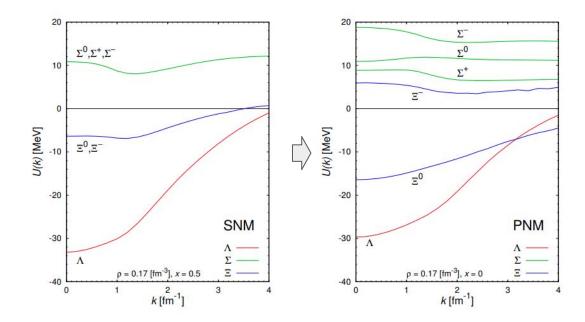


Deeply bound Ξ--14N systems


Implies an attractive interaction

Models of the p- Ξ - potential

ESC16L Meson exchange model M. M. Nagels et al., Phys. Rev. C 99, 044003 (2019)

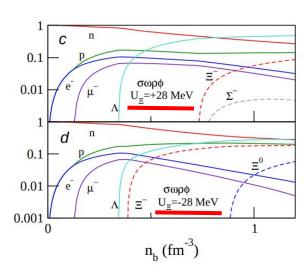


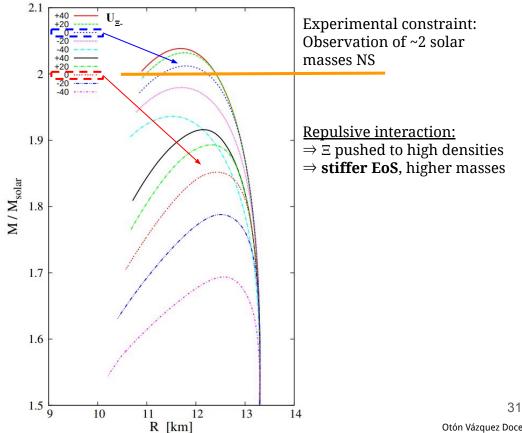
In medium: Many body interaction, average Ξ^- Single particle potential (U_{Ξ^-})

Lattice QCD:

 $U_{\underline{a}}$ moves from slightly attractive in symmetric nuclear matter to **slightly repulsive** $U_{\underline{a}}$ ~6 MeV in pure neutron matter (NS)

HAL QCD Coll., PoS INPC2016 (2016) 277





- RMF models: Equation Of State (EoS) of neutron-rich matter with hyperon content

> \rightarrow use single particle potential at saturation densities as input

Weissenborn et al., Nucl. Phys. A881 (2012) 62-77

The Proton- Ω correlation function in Au+Au collisions at \sqrt{s_{NN}} =200 GeV STAR Collaboration. Phys.Lett.B 790 (2019) 490-497

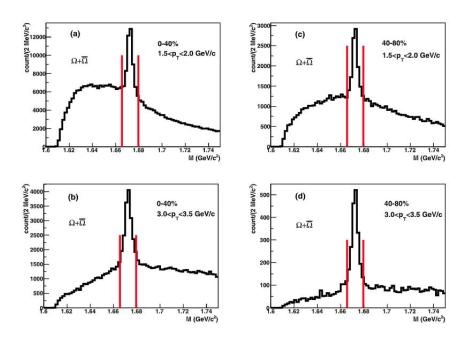
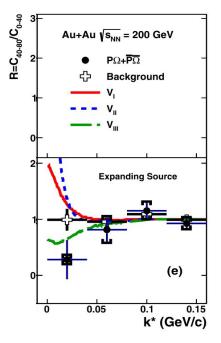
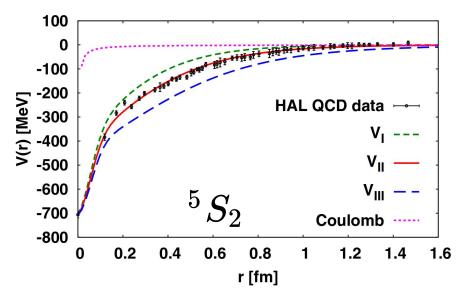



Table 2 Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton-Ω potentials [24].

Spin-2 $p\Omega$ potentials	V_I	V _{II}	VIII
E _b (MeV)	_	6.3	26.9
a_0 (fm)	-1.12	5.79	1.29
$\mathbf{r}_{\mathbf{eff}}$ (fm)	1.16	0.96	0.65

Lattice calculations with heavy quark masses, m $_{\pi}$ = 875 MeV/ c^2 , m $_{K}$ = 916 MeV/ c^2 F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)


Fitted by an attractive Gaussian core + an attractive tail, vary range parameter at long distance (b_5) K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901

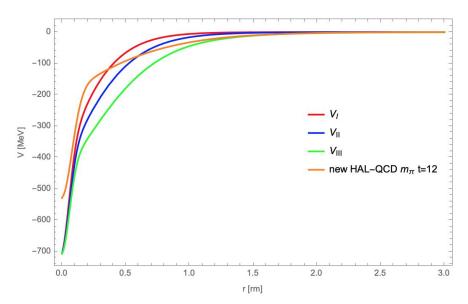
$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

- \circ V_{II} : best fit to Lattice calculations
- \circ V_I/V_{III} : weaker / stronger attraction

Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton- Ω potentials [24].

Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	-	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
r eff (fm)	1.16	0.96	0.65

Lattice calculations with heavy quark masses, m_{π} = 875 MeV/ c^2 , m_{K} = 916 MeV/ c^2 F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)

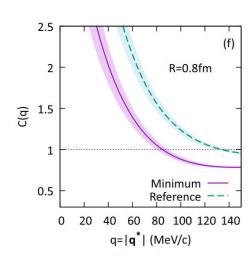

Fitted by an attractive Gaussian core + an attractive tail, vary range parameter at long distance (b_5) K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

- \circ V_{II} : best fit to Lattice calculations
- \circ V_{I}/V_{III} : weaker / stronger attraction

Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton- Ω potentials [24].

V_I	V_{II}	V _{III}
-	6.3	26.9
-1.12	5.79	1.29
1.16	0.96	0.65
	- -1.12	- 6.3 -1.12 5.79

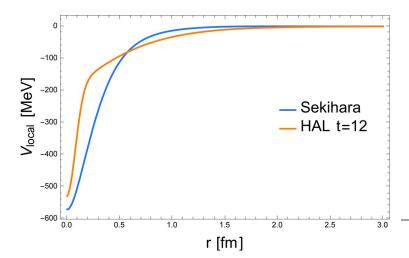


Models of the p- Ω - interaction

- -> Calculations provide the potential shape for the ${}^5\mathrm{S}_2$ channel (weight ${}^5\!\!$).
- -> Currently, no model for the other channel in S-wave interaction, 3S_1 (weight 3 /s). Requires coupled channel treatment.

Assume two different (~extreme) scenarios:

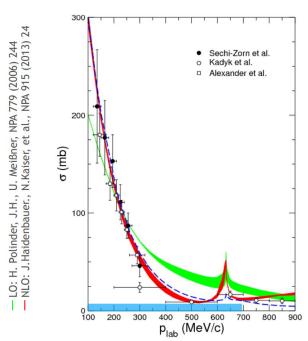
- 1.- Complete absorption for distances $r < r_0$. r_0 chosen from the condition $|V(^5S_2)| < |V(Coulomb)|$ for $r > r_0$
- 2.- Complete elastic with a similar attraction as 5S_2 Kenji Morita et al., Phys. Rev. C101, 015201 (2020)



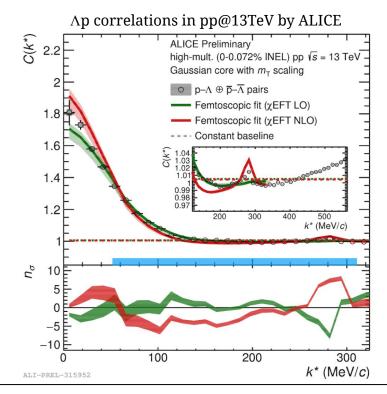
Models of the p- Ω - interaction

- Lattice HAL-QCD potential with physical quark masses (5S_2 channel) T. Iritani et al., Phys. Lett. B792 (2019) 284.

 - $m_{\pi} = 146 \text{ MeV}/c^2$ $m_{K} = 525 \text{ MeV}/c^2$
- **Sekihara:** Meson-exchange model (5S_2 channel) T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)
 - Short range attractive interaction fitted to previous HAL-QCD scattering parameters


Model	$p\Omega^{r}$ binding energy (strong interaction only)	
HAL-QCD	1.54 MeV	
Sekihara	0.1 MeV	

+1 MeV with Coulomb


 \rightarrow Models provide so far only 5S_2 channel (weight ${}^5\!8$)

Previous scattering data No experimental evidence of the cusp due to $\Sigma N/\Lambda N$ coupling, responsible for the appearance of a repulsive short range component in the Λp interaction

- Extension of the kinematic range and **improved precision**.
- Clear experimental evidence of the cusp
- LO and NLO calculations within xEFT fail to reproduce the data