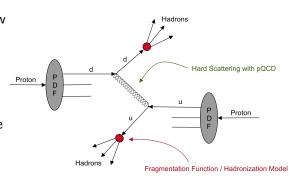
Westfälische Wilhelms-Universität Münster, Germany Oak Ridge National Laboratory, TN, United States

ω and η' production in proton-proton collisions at the LHC measured with ALICE

Florian Jonas for the ALICE collaboration florian.jonas@cern.ch

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS



28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

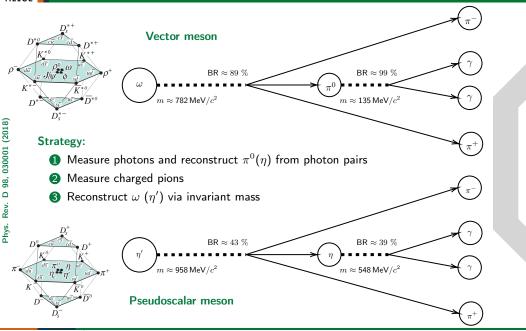
Motivation I: Theoretical motivations

- measurements of hadron production allow to test theory calculations and constrain underlying ...
 - \dots parton distribution functions (PDF)
 - ... fragmentation functions (FF)
- heavy neutral mesons (e.g. ω and η') are an interesting complementary probe to existing π^0 and η measurements (different mass, spin ...)

spark interest for new developments of fragmentation functions:
 "No such considerable interest has been shown towards vector meson production due to the scarcity of the data available so far." (arXiv:1705.00214)

Motivation II: Experimental motivations

Experimental Motivations I: Ones signal is others background


- neutral mesons contribute as background in other measurements
 - decay photons in direct photon measurements (e.g. $\omega \to \pi^0 \gamma$)
 - background in di-lepton measurements (e.g. $\omega \to e^+e^-$)
 - ⇒ better knowledge of background
 - ⇒ smaller uncertainties on signal

Experimental Motivations II: Probe for the quark-gluon plasma (QGP)

- pp data baseline for study of production suppression in p-Pb or Pb-Pb due to QGP $\rightarrow \omega$, η' vs. π^0 , π^{\pm} : dependence on mass, spin, flavor?
- modification of meson properties (mass, width) due to partial restauration of chiral symmetry in QGP

Analysis recipe

Photon measurement

ElectroMagnetic Calorimeter (EMCal)

Pb-scintillator sampling calorimeter

 larger acceptance than PHOS but lower resolution

• acceptance: $|\eta| < 0.7$, $\Delta \varphi = 107^\circ$

• size per tower pprox 2 Molière rad.

Dijet Calorimeter (DCal)

- installed since 2015
- extension of EMCal at opposite side in azimuth

Photon Conversion Method (PCM)

- measurement of photons via their conversion to e^+e^- pairs
- good resolution and low- p_{T} reach
- limited by conversion probability of $\approx 8\,\%$

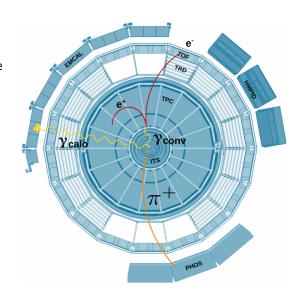
Photon Spectrometer (PHOS)

- based on lead-tungstate scintillation crystals
 - smaller acceptance than EMCal but higher resolution
- acceptance: $|\eta| < 0.13$, $\Delta \varphi = 70^\circ$
- crystal size ≈ 1 Molière radius

Ycony

Ycalo

6/13

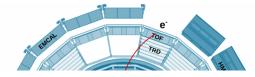

Charged pion measurement

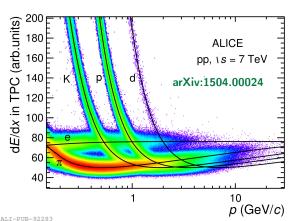
General track selection

- reconstruction of track in Inner Tracking System (ITS) and Time Projection Chamber (TPC)
- cuts on the number of hit points in TPC & χ^2 of track fitting ensure good track quality

Charged pion identification

- selection of primary particle through cut on DCA to collision vertex
- identification of pions via energy loss dE/dx in TPC

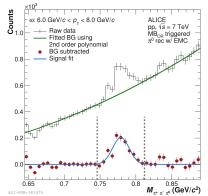

Charged pion measurement


General track selection

- reconstruction of track in Inner Tracking System (ITS) and Time Projection Chamber (TPC)
- cuts on the number of hit points in TPC & χ^2 of track fitting ensure good track quality

Charged pion identification

- selection of primary particle through cut on DCA to collision vertex
- identification of pions via energy loss dE/dx in TPC

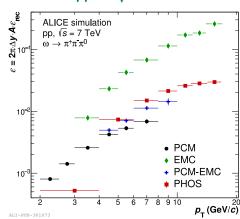

Meson reconstruction

π^0 or η reconstruction

- reconstruction via $\pi^0/\eta \to \gamma\gamma$
- Idea: combine all different photon reconstruction methods to profit from advantages of each method:
 - PCM-PCM
 - PCM-EMCal
 - PCM-PHOS
 - EMCal-EMCal
 - PHOS-PHOS
- calculate inv. mass of all possible $\gamma\gamma$ pairs in given event
- select pairs in vicinity of $\pi^0(\eta)$ mass as $\pi^0(\eta)$ candidate

ω or η' reconstruction

- calculate invariant mass of all $\pi^+\pi^-\pi^0$ ($\pi^+\pi^-\eta$) combinations
- signal+background description using Gaussian + second order polynomial
- signal extraction by bin counting within 2σ of Gaussian

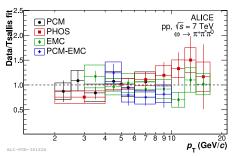

From raw yields to cross sections

$$E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3} = \frac{1}{2\pi}\frac{1}{p_{\mathrm{T}}}\cdot\frac{\sigma_{\mathrm{MB_{OR}}}}{N_{\mathrm{evt.,MB}}}\cdot\frac{1}{A\cdot\epsilon_{\mathrm{rec.}}}\cdot\frac{1}{\mathrm{BR}}\cdot\frac{N_{\mathrm{raw}}^\omega}{\Delta y\Delta p_{\mathrm{T}}}$$

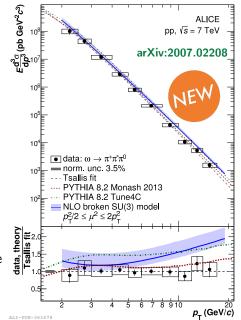
Spectra corrections:

- correction factors accounting for geometrical acceptance A and reconstruction efficiency $\epsilon_{\rm rec}$
- obtained using MC events with full GEANT3 detector simulation
- correction factor $\epsilon = 2\pi\Delta y \cdot A \cdot \epsilon_{\rm rec.}$ showcases strength of each reconstruction method

Correction factors for ω mesons in pp at $\sqrt{s}=7$ TeV



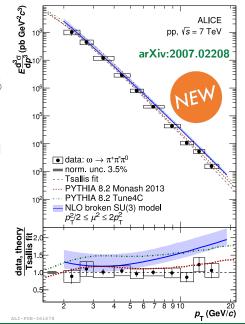
8/13



Results: ω production in pp collisions at $\sqrt{s} = 7$ TeV

Combination of Individual Measurements

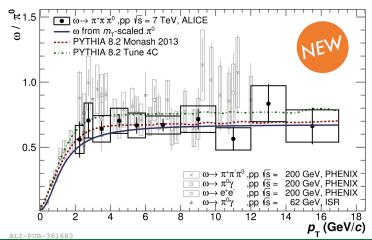
- Dataset: MB pp collisions at $\sqrt{s} = 7 \text{ TeV}$ recorded by ALICE in 2010 (≈ 400 mio evt., $\mathcal{L}_{\text{Int}} \approx 7 \, \text{nb}^{-1}$)
- ω cross section measured for the first time at mid-rapidity at LHC energies over momentum range of $2 < p_{\rm T} < 17 \,{\rm GeV}/c$
- sys. uncertainties dominated by signal extraction


9/13

Results: ω production in pp collisions at $\sqrt{s} = 7$ TeV

Comparison to theory

- PYTHIA 8.2 Tune4C overestimates data by $\approx 50 \,\%$
- PYTHIA 8.2 Monash 2013 tune describes data within uncertainties over full p_T range
 - tune includes more recent experimental results and vector meson production parameters lowered
- NLO calculation in agreement with data at low p_{T} ; overestimation by $\approx 50\%$ at high $p_{\rm T}$
 - model with broken SU(3) symmetry describing fragmentation of entire vector meson nonet
 - model tuned using pp (RHIC) and e^+e^- (LEP) data (arXiv:1705.00214)



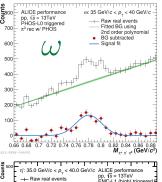
Results: ω production in pp collisions at \sqrt{s} =7 TeV

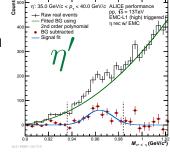
• ratio of ω production to π^0 production (arXiv:1205.5724) constant above 2.5 GeV/c:

$$C^{\omega/\pi^0} = 0.69 \pm 0.03 \text{ (stat) } \pm 0.04 \text{ (sys)}$$

- ratio in agreement with PYTHIA 8.2 predictions & measurements at lower collision energies
- ullet compatible with $m_{
 m T}$ scaling (phenomenological scaling rule previously observed at RHIC & ISR)

ω and η' production in pp collisions at $\sqrt{s}=$ 13 TeV

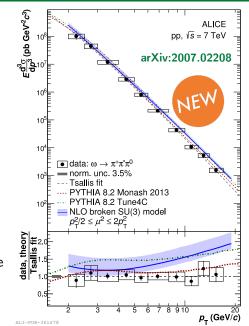

Dataset


- pp collisions at $\sqrt{s}=$ 13 TeV recorded with ALICE from 2016-2018
- significantly more MB statistics (1650 mio. vs. 400 mio in 2010)
- triggers available offer high statistics at high $p_{\rm T}$ (e.g. EMCal trigger > 8 GeV with $\mathcal{L}_{\rm Int} \approx$ 9.6 pb $^{-1}$)
- ALICE detector upgrades increase available statistics further

Measurements

- measurement of ω production expected to cover an unprecedented momentum range of 1.6 to 45 GeV/c with overall smaller unc.
- inclusive production cross section of η' mesons will be measured for the first time at LHC energies, covering a momentum range of 3 to 45 GeV/c!

Stay tuned!


Summary

What have we measured?

- ω production in pp at $\sqrt{s} = 7$ TeV has been measured for the first time at mid-rapidity at LHC energies
- measurement in agreement with PYTHIA 8.2 Monash 2013 and NLO (at low p_T)

What are we working on?

• the measurement of $\omega \& \eta'$ mesons in pp at $\sqrt{s} = 13 \, \text{TeV}$ will provide insights into their production over an unprecedented mom. range

