TMD densities at leading and higher order from the Parton Branching method

Sara Taheri Monfared

Deutsches Elektronen-Synchrotron (DESY)
ICHEP 2020

On be half of

A. Bermudez Martinez, P.L.S. Connor, D. Dominguez Damiani, L.I. Estevez Banos, F. Hautmann, H. Jung, J. Lidrych, A. Lelek, M. Schmitz, Q. Wang, H. Yang

Outline

(1) Recap of Parton Branching method
(2) Determination of PDFs at 5FL-LO, 5FL-NLO \& 4FL-NLO
(3) What is the gain with exclusive evolution?

Recap of Parton Branching method

- Including the Δ_{s} in to the differential form of the DGLAP eq.

$$
\mu^{2} \frac{\partial}{\partial \mu^{2}} \frac{f\left(x, \mu^{2}\right)}{\Delta_{s}\left(\mu^{2}\right)}=\int \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} \frac{\mathcal{P}(z)}{\Delta_{s}\left(\mu^{2}\right)} f\left(\frac{x}{z}, \mu^{2}\right)
$$

- Integral form with a very simple physical interpretation:

$$
f\left(x, \mu^{2}\right)=f\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right)+\int \frac{d z}{z} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \cdot \frac{\Delta_{s}\left(\mu^{2}\right)}{\Delta_{s}\left(\mu^{\prime 2}\right)} P^{R}(z) f\left(\frac{x}{z}, \mu^{\prime 2}\right)
$$

- Solve integral equation via iteration:

$$
\begin{aligned}
& f_{0}\left(x, \mu^{2}\right)=f\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right) \\
& f_{1}\left(x, \mu^{2}\right)=f\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right) \\
& +\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\Delta_{s}\left(\mu^{2}\right)}{\Delta_{s}\left(\mu^{\prime 2}\right)} \int \frac{d z}{z} P^{R}(z) f\left(x / z, \mu_{0}^{2}\right) \Delta\left(\mu^{\prime 2}\right)
\end{aligned}
$$

- iterating with second branching and so on to get the full solution

Transverse Momentum Dependence

- Parton Branching evolution generates every single branching:
- kinematics can be calculated at every step
- give physics interpretation of evolution scale:
- in high energy limit: p_{T}-ordering:
$\mu=q_{T}$
- angular ordering: $\mu=q_{T} /(1-z)$

Determination of PDFs

PDFs from PB method: fit to HERA data

- A kernel obtained from the MC solution of the evolution equation for any initial parton
- Kernel is folded with the non-perturbative starting distribution

$$
\begin{aligned}
x f_{a}\left(x, \mu^{2}\right) & =x \int d x^{\prime} \int d x^{\prime \prime} \mathcal{A}_{0, b}\left(x^{\prime}\right) \tilde{\mathcal{A}}_{a}^{b}\left(x^{\prime \prime}, \mu^{2}\right) \delta\left(x^{\prime} x^{\prime \prime}-x\right) \\
& =\int d x^{\prime} \mathcal{A}_{0, b}\left(x^{\prime}\right) \cdot \frac{x}{x^{\prime}} \tilde{\mathcal{A}}_{a}^{b}\left(\frac{x}{x^{\prime}}, \mu^{2}\right)
\end{aligned}
$$

- Fit performed using \times Fitter frame (with collinear Coefficient functions at both LO \& NLO)
- LO PDFs are of especial interest for MC event generators, based on LO ME + PS.
- full coupled-evolution with all flavors
- using full HERA I+II inclusive DIS (neutral current, charged current) data
- $3.5<Q^{2}<50000 \mathrm{GeV}^{2} \& 4.10^{-5}<x<0.65$
- Can be easily extended to include any other measurement for fit.

Standard 5FL-NLO full fit with different scale in α_{s}

- Set1- $\alpha_{s}\left(\mu^{2}\right) \rightarrow \chi^{2} /$ dof $=1.21$
- Set2- $\alpha_{s}\left(p_{T}^{2}\right) \rightarrow \chi^{2} /$ dof $=1.21$

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-A_{g}^{\prime} x^{B_{g}}(1-x)^{C_{g}}, \\
& x u_{v}(x)=A_{u_{v}} x^{B_{u_{v}}}(1-x)^{C_{U_{v}}}\left(1+E_{u_{v}} x^{2}\right), \\
& x d_{v}(x)=A_{d_{v}} x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\
& x \bar{U}(x)=A_{\bar{U}} x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}\left(1+D_{\bar{U}} x\right), \\
& x \bar{D}(x)=A_{\bar{D}} x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}} .
\end{aligned}
$$

- fits are as good as HERAPDF2.0.
- very different gluon distribution obtained at small Q^{2}
- the differences are washed out at higher Q^{2}
A. Martinez, P. Connor, H. Jung, A. Lelek, R. Žlebčík, F. Hautmann and V. Radescu, Phys. Rev. D 99, no. 7, 074008 (2019).

Standard 5FL-LO full fit with different scale in α_{s}

LO TMDs are important for LO multi-jet merging

\rightarrow see talk by Armando Bermudes: 28th July; Strong Interactions and Hadron Physics

- Set1- $\alpha_{s}\left(\mu^{2}\right) \rightarrow \chi^{2} /$ dof $=1.24$
- Set2- $\alpha_{s}\left(p_{T}^{2}\right) \rightarrow \chi^{2} /$ dof $=1.37$

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}, \\
& x u_{v}(x)=A_{U_{v}} x^{B_{u_{v}}}(1-x)^{C_{U_{v}}}\left(1+E_{U_{v}} x^{2}\right), \\
& x d_{v}(x)=A_{d_{v}} x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\
& x \bar{U}(x)=A_{\bar{U}} x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}\left(1+D_{\bar{U}} x\right), \\
& x \bar{D}(x)=A_{\bar{D}} x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}} .
\end{aligned}
$$

- very different gluon distribution obtained at small and large Q^{2}
- the uncertainty is smaller at LO compared to NLO

Standard 4FL-NLO full fit with different scale in α_{s}

NEW

- Set1- $\alpha_{s}\left(\mu^{2}\right) \rightarrow \chi^{2} /$ dof $=1.20$
- Set2- $\alpha_{s}\left(p_{T}^{2}\right) \rightarrow \chi^{2} /$ dof $=1.23$

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-A_{g}^{\prime} x^{B_{g}^{\prime}}(1-x)^{C_{g}^{\prime}} \\
& x u_{v}(x)=A_{u_{v}} x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}} x^{2}\right), \\
& x d_{v}(x)=A_{d_{v}} x^{B_{d_{v}}(1-x)^{C_{d_{v}}}} \\
& x \bar{U}(x)=A_{\bar{U}} x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}\left(1+D_{\bar{U}} x\right), \\
& x \bar{D}(x)=A_{\bar{D}} x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}
\end{aligned}
$$

- very different gluon distribution obtained at small Q^{2}
- the differences are washed out at higher Q^{2}

Fit to DIS x-section at 5FL-NLO, 5FL-LO \& 4FL-NLO: F_{2}

How well can we describe inclusive DIS cross section with the two sets at NLO \& LO?

What is the gain with exclusive evolution?

k_{t} behavior at LO and NLO

- difference coming from different starting distribution and also the evolution
- with the same starting distribution we still get differences at small k_{t}
- at larger k_{t}, more splitting \rightarrow The differences between LO and NLO are washed out

k_{t} behavior at 4FL-NLO and 5FL-NLO

- 4-FL gluon is larger than 5-FL gluon at small $k t$ region.
- at small $k_{t} \rightarrow$ starting distribution
- at large $k_{t} \rightarrow$ the differences are washed out due to having more splittings.

The basic contribution to Bottom Flavor Production

Fred Olness's talk-U Manchester-22 April 2016
($\alpha_{S}{ }^{1}$

- data in the $\mathrm{Z}+\geq 1$ b-jet and $\mathrm{Z}+\geq 2$ b-jets cases are better described by 5 FL prediction and 4 FL prediction, respectively.

PB-TMD, PB-TMD shower \& MC@NLO : Z+b jets

CMS Measurements of the associated production of $a \mathbf{Z}$ boson and b jets in pp collisions at 8 TeV , Eur. Phys. J., C77(11), 751, CMS-SMP-14-010, arxiv:1611.06507

- cuts:
- leptons: $|\eta|<2.4, p_{T}>20 \mathrm{GeV}, 71 \mathrm{GeV}<m_{\| /}<111 \mathrm{GeV}$
- jets: anti- $k_{T}, \mathrm{R}=0.5,|\eta|<2.4, p_{T}>30 \mathrm{GeV}$, b-Hadron

CMS, $8 \mathrm{TeV}, \mathrm{Z}$ boson pt, at least two b jets

- p_{t} spectrum of Z boson is nicely described with both $4 F L$ and $5 F L$ schemes

$\mathrm{Z}+2 \mathrm{~b}$ jets: sensitivity to initial state shower for 5 FL

- TMD has little impact
- IPS has significant large effect
- FPS has contribution at small $\Delta \phi: g \rightarrow b b$

Z +2 b jets: comparison between 5FL \& 4FL

- ME calculation at 5 FL is $\mathrm{Z}+1$ jet NLO
- PS is important in the 5-FL scheme

CMS, 8 TeV, DeltaPhi bb, at least two b jets

- ME calculation at 4 FL is $\mathrm{Z}+2$ jet NLO
- PS and TMD has very little impact in 4-FL scheme

Z +2 b -jets: $\Delta \phi(b b)$ - comparison to measurement

- $\Delta \phi$ between the b-b system is well described with the 4FL \& 5FL scheme

- In 4FL, ME plays a rule (little contribution from TMD and PS)
- the 5 FL , quite a lot contribution from the TMD + the initial + final state PS
- both calculations do very nicely agree
- the calculation which involves TMD + PS is consistent with the full ME calculations even at NLO

Conclusion

- PB method to solve DGLAP equation at LO, NLO, NNLO.
- advantages of PB method (angular ordering)
- method directly applicable to determine k_{t} distribution (as would be done in PS)
- TMD distributions for all flavors determined at LO \& NLO
- Application to pp processes:
- NEW: application to Z+b-jets
- Z+b-jets interesting tool for studying initial state parton radiation in very detail: TMD and TMD showers
- 4-FL and 5-FL results including:TMD+IPS+FPS do agree

Thank you

Feel invited to connect to the following link for more discussions on these topics after today's sessions ($\sim 21: 00$):
https://cern.zoom.us/j/97149635135?pwd=NnJDRGpaOU9KenBVa3Zsck1LM05RQT09 Same ICHEP Zoom password

Backup

Evolution equation and parton branching method

- use momentum weighted PDFs with real emission probability

$$
\begin{aligned}
x f_{a}\left(x, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) x f_{a}\left(x, \mu_{0}^{2}\right) \\
& +\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\Delta_{s}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z_{M}} d z P_{a b}^{R}\left(\alpha_{a}, z\right) \frac{x}{z} f_{b}\left(x / z, \mu^{2}\right)
\end{aligned}
$$

- due to step by step individual branchings, all kinematics can be calculated exactly.
- z_{M} introduced to separate real from virtual and non-resolvable branching
- reproduces DGLAP up to $\mathcal{O}\left(1-z_{M}\right)$
- make use of momentum sum rule to treat virtual corrections
- use Sudakov form factor for non-resolvable and virtual corrections

$$
\Delta_{a}\left(z_{M}, \mu^{2}, \mu_{0}^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}\left(\alpha_{s}, z\right)\right)
$$

PDFs from PB method: fit to HERA data

- two angular ordered sets with different argument in α_{s} (either μ or q_{t})
- $q_{c u t}$ in, $\alpha_{s}\left(\max \left(q_{c u t}^{2},\left|q_{t, i}^{2}\right|\right)\right)$, to avoid the non-perturbative region, $\left|q_{t, i}^{2}\right|=\left(1-z_{i}\right)^{2} \mu_{i}^{2}$
- for both LO \& NLO:
- $\mu_{0}^{2}=1.9 \mathrm{GeV}^{2}$ for set1 (as in HERAPDF)
- $\mu_{0}^{2}=1.4 \mathrm{GeV}^{2}$ for set2 (the best $\chi^{2} /$ dof)
- fits to HERA measurements performed using $\chi^{2} /$ dof minimization
- the experimental uncertainties defined with the Hessian method with $\Delta \chi^{2}=1$.
- the model dependence obtained by varying charm and bottom masses and μ_{0}^{2}.
- the uncertainty coming from the $q_{c u t}$ in set2

	Central value	Lower value	Upper value
PB Set1 $\mu_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	1.9	1.6	2.2
PB Set 2 $\mu_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	1.4	1.1	1.7
PB Set $2 q_{\text {cut }}(\mathrm{GeV})$	1.0	0.9	1.1
$m_{c}(\mathrm{GeV})$	1.47	1.41	1.53
$m_{b}(\mathrm{GeV})$	4.5	4.25	4.75

A. Martinez, P. Connor, H. Jung, A. Lelek, R. Žlebčík, F. Hautmann and V. Radescu, Phys. Rev. D 99, no. 7, $\underline{0} 74008$ (2019),

TMD distributions from fit to HERA data

- Different shape and dependence of the uncertainty as a function of k_{t}.
- Model dependence larger than experimental uncertainties.
- Difference essentially in low k_{t} region.
- Introducing p_{T} instead of μ suppresses further soft gluons at low k_{t}.
A. Martinez, P. Connor, H. Jung, A. Lelek, R. Žlebčík, F. Hautmann and V. Radescu, Phys. Rev. D 99, no. 7, $\underline{\underline{\underline{0}}}$ 年4008_(2019),

Kinematic coverage of the HERA data in the $\left(x, Q^{2}\right)$ plane

- This is mainly small Q^{2} effects rather than small \times one.

Kinematic coverage

- Going from $Q_{\text {min }}=3.5$ to $5 \mathrm{GeV}^{2}$, no obvious change on x while χ^{2} change significantly.
- No x dependence \rightarrow No direct need for any small-x modification

PB-TMD, PB-TMD shower \& MC@NLO : Z+b jets

- MC@NLO for Z+b : (5-FL scheme \& 4-FL scheme)
- using herweg6 subtraction terms
- PB-TMD to generate initial state k_{T}
- initial state parton shower following PB TMD
- uncertainties:
- MC@NLO for Z+b : (5-FL scheme \& 4-FL scheme)
- using herweg6 subtraction terms
- PB-TMD to generate initial state k_{T}
- initial state parton shower following PB TMD

z+b-jets: $\Delta \phi(Z b)$-comparison to measurements II

comparison between 4FL-PB-TMD and 5FL-PB-TMD
CMS, 8 TeV , DeltaPhi_Zb, at least one b jet

Z-jets: sensitivity to initial state k_{T}

8 TeV , DeltaPhi_Zb, at least one b jet

- TMD important at large $\Delta \phi$
- Initial state PS only small effect
- FSR only small effect at large $\Delta \phi$

