Multi-Differential and Unbinned Measurements of Hadronic Event Shapes in e⁺e⁻ Collisions at $\sqrt{s} = 91$ GeV from ALEPH Open Data

<u>Anthony Badea</u>, Patrick Komiske, Eric Metodiev, Ben Nachman, Yen-Jie Lee, Jesse Thaler, Austin Baty, Chris McGinn

ICHEP 2020 | Prague (Virtual) July 30, 2020

Unfolding 3. Challenges with Traditional Unfolding 4. Omnifold

Data

5. ALEPH Archived Data

Physics

6. Observables: τ and $\log(\tau)$ 7. Measurement

8. Summary & Comments9. Thanks & Contact Info

Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Ex. – Two jets acquiring the same mass in different ways

Example with IBU

21 x 15 bins in $\ln(1/z) \times \ln(R/\Delta R)$

- Must redo unfolding for other binnings e.g. finer/coarser, k_T (diagonal) binning, etc.

Limited to two observables

- $21^2 \times 15^2$ elements in response matrix R
- Going differential in n bins of p_T would multiply size of R by n^2

Anthony Badea — ALEPH Omnifold

Slide borrowed from Patrick Komiske: <u>click me</u>

Omnifold

Multi-differential and unbinned machine learning based generalization of Iterative Bayesian Unfolding (IBU)

Key Insight:

- 1. Unfolding matrix accessible via the Likelihood ratios of data, reconstruction, and truth.
- 2. Likelihood ratio = optimal binary classifier by Neyman-Pearson Lemma
- 3. Use machine learning with softmax activation to get Likelihood ratios by training a network to classify events as data or reconstruction and reconstruction or truth

Andreassen, Komiske, Metodiev, Nachman, Thaler <u>Phys. Rev. Lett. 124, 182001</u> <u>More details in backup</u>

ALEPH Archived Data

- Collection at LEP between 1992 1995 with center-of-mass energy of 91 GeV
- Approx. 1.36 million e⁺e⁻ collisions used for this study
- Collaboration event and track selection applied
- Unfolding utilizes archived Pythia 6.1 with matched truth and reconstructed events
- *Future*: compare with Pythia 8.230, Herwig 7.1.5, and Sherpa 2.2.6
- More details in backup

Many thanks to ALEPH Collaboration!!

Two-Particle Correlation: Badea et al. Phys. Rev. Lett. 123, 212002

Observables: τ and $\log(\tau)$

$$T \equiv \max_{\overrightarrow{n}} \left(\frac{\sum_{i \in E} |\overrightarrow{n} \cdot \overrightarrow{p}_i|}{\sum_{i \in E} |\overrightarrow{p}_i|} \right)$$

<u>Why $\tau = 1$ - Thrust?</u>

Discrepancy with theory predominantly in the highly perturbative regions = low T or high τ . Theoretical calculations often work with τ .

Why linear and log space?

Linear and log space highlight different physics. Insights into perturbative vs. nonperturbative regimes.

Nonperturbative vs. Perturbative

Measurement: $\tau = 1 - T$

Anthony Badea — ALEPH Omnifold

Measurement: $\ln(\tau) = \ln(1 - T)$

Summary & Comments

Significance of the Technique

Current and previous results suggest that Omnifold is a viable solution to challenges facing modern unfolding methods

Utilizing Archived Data

Significant progress has been made in deploying Omnifold on real collider data via the ALEPH Archived Data

Ongoing Work

Handle uncertainties, compare results with different Monte Carlo, perform multi-differential unfolded measurements

Thank you from the analysis team

Anthony Badea

Yen-Jie Lee

Patrick T. Komiske III

Ben Nachman

Eric Metodiev

Jesse Thaler

Email us questions/comments: <u>abadea@g.harvard.edu</u>!

BACKUP

Omnifold

Challenges with Traditional Unfolding

- Goal of unfolding: correct the measured data for effects arising from the finite efficiency and resolution of the detector
- Current prominent methods: bin-by-bin correction factors, matrix inversion, template fits with regularization, iterative methods
- Above methods apply to binned distributions and <u>must be</u> repeated for each desired binning and observable
- **Dream**: all analyses use same unfolding done prior to choice of observable or binning. Unfold the *entire* phase space.

Omnifold Resources

- List of talks explaining the procedure in more depth: <u>https://indico.cern.ch/event/906711/</u> <u>contributions/3851602/attachments/2043779/3424363/OmniFoldATLAS.pdf</u>
- Jupyter notebook demo: <u>https://mybinder.org/v2/gh/ericmetodiev/OmniFold/master?</u> <u>filepath=OmniFold%20Demo.ipynb</u>

Omnifold

Outline of Uncertainty Calculation

- Statistical handled via bootstrapping
- Systematics
 - Vary event and track selections
- Method & Non-closure Uncertainties
 - Repeat unfolding with different Monte Carlo Pythia 8, Herwig 7, Sherpa 2

Uncorrected

Corrected

The truth Monte Carlo with an event-by-event matched reconstruction was used for the unfolding. This Monte Carlo, however, has hadronic event selections applied. There is another truth Monte Carlo without hadronic event selections that is event-by-event matched to the truth Monte Carlo with selections but not to reconstruction. A correction is applied to take us from truth with hadronic event selection to truth without hadronic event selection.

ALEPH Data

ALEPH Detector at LEP

Multiplicity Distribution

Thrust Distribution split in Multiplicity Bins **MOD** PRELIMINARY $e^+e^- \rightarrow hadrons$, fs = 91 GeV**ALEPH Archived Data** 10^{-1} 0 Archived PYTHIA 6.1 MC VEEDED BOODD 10000000000 Inclusive N^{Offline} $4 \le N_{Trk}^{Offline} < 10$ $10 \le N_{Trk}^{Offline} < 20$ 10^{-2} C II ဗီြ10⁻³ ೯<mark>೮</mark> AAA AA 10^{-4} 10⁻⁵ . • ⊛® ۲ -0⁰⁰⁰⁰ 10 ¥500000000000000000000 VERCOSCO $N_{Trk}^{Offline} \ge 30$ $N_{Trk}^{Offline} \ge 35$ $20 \leq N_{Trk}^{Offline}$ < 30 10⁻² ဗီငြာ10⁻³ င္ 10^{-4} 10^{-5} 0.7 0.8 0.9 0.7 0.8 0.7 0.8 0.6 0.6 0.9 0.6 0.9 1 1 1 Thrust Thrust Thrust

Event Selection

LEP 1 Events satisfying selection have a 1 inside of the tBranch 'passesAll'

passesAll defined by:

- passesNTupleAfterCut: Checks that the run and event number of the picked up data matches the recorded numbers. Used to verify that the data is recorded in the nTuple correctly. NOT A CUT.
- passesTotalChgEnergyMin: Total Energy of Charge Tracks >= 15 GeV
- passesNTrkMin: # of Charged Tracks >= 5
- passesNeuNch: # of Charged Tracks + Neutral >= 13
- passesSTheta: $|\cos(\theta_{Sphericity})| \le 0.82$
- passesMissP: Missing Momentum < 20 GeV (Only LEP2) → TURNED OFF
- passesISR: More detailed look at link below (Only LEP2) → TURNED OFF
- passesWW: More detailed look at link below (Only LEP2) → TURNED OFF

Following guidance of:

http://cds.cern.ch/record/690637/files/ep-2003-084.pdf, Section 2.2 page 2

% From Each Event Selection

	Raw nEvent	passesNTupleAfterCut	passesTotalChgEnergyMin	passesNTrkMin
LEP 1992	14024	1.0	1.000000	0.999715
LEP 1993	538601	1.0	0.999794	0.999870
LEP 1994	1365440	1.0	0.999801	0.999851
LEP 1995	595095	1.0	0.999807	0.999887

	passesSTheta	passesMissP	passesISR	passesWW	passesNeuNch	passesAll
LEP 1992	0.976683	0.971549	0.989375	0.989375	0.994438	0.945451
LEP 1993	0.977052	0.972796	0.989944	0.989775	0.994645	0.947002
LEP 1994	0.976877	0.972935	0.989827	0.989784	0.994567	0.947070
LEP 1995	0.977225	0.973085	0.989714	0.989531	0.994532	0.947402

Track Selection (High Purity)

Tracks satisfying selection have a 1 inside of the tBranch 'highPurity'

highPurity defined by:

- passesPWFlag: 0,1,2 (only pick up charged tracks and leptons)
- Starting from 0 pwflag (via Marcello) CHARGED_TRACK, CHARGED_LEPTONS1, CHARGED_LEPTONS2, V0, PHOTON, NEUTRAL_HADRON
- passesD0: $|d_0| \le 2$
- passesZ0: $|z_0| \le 10$
- passesNTPC: # hits in TPC \geq 4
- passesAbsCosThCut: $|\cos \theta_{ch}| \le 0.94$ (only includes charged tracks)
- passesPt: $p_T \ge 0.2$

Calorimeter object cuts NOT implemented:

- $|\cos \theta_{cal. \ obj.}| \le 0.98$
- $E_{cal. obj.} \ge 0.8 \text{ GeV}$

% From Each Track Selection

	pwflag	d0	z0	ntpc	charged theta	pt	highPurity
Cut	2.000000e+00	2.000000e+00	1.000000e+01	4.000000e+00	9.400000e-01	2.000000e-01	1.000000e+00
1992	4.128370e+05	4.128370e+05	4.128370e+05	4.128370e+05	2.615710e+05	4.128370e+05	4.128370e+05
% w/ Cut	6.335939e-01	6.336617e-01	6.336617e-01	6.336617e-01	9.999771e-01	9.831192e-01	9.830296e-01
1993	1.590741e+07	1.590741e+07	1.590741e+07	1.590741e+07	1.006942e+07	1.590741e+07	1.590741e+07
% w/ Cut	6.330015e-01	6.330727e-01	6.330727e-01	6.330727e-01	9.999800e-01	9.825680e-01	9.824973e-01
1994	4.005171e+07	4.005171e+07	4.005171e+07	4.005171e+07	2.550923e+07	4.005171e+07	4.005171e+07
% w/ Cut	6.369073e-01	6.369776e-01	6.369776e-01	6.369776e-01	9.999827e-01	9.825122e-01	9.824287e-01
1995	1.755621e+07	1.755621e+07	1.755621e+07	1.755621e+07	1.111647e+07	1.755621e+07	1.755621e+07
% w/ Cut	6.331930e-01	6.332619e-01	6.332619e-01	6.332619e-01	9.999831e-01	9.828150e-01	9.827427e-01

NOTES:

- d0, z0 = -999.0 if track was not selected by ALEPH. In MITHIG nTuples all tracks with d0, z0 != -999.0 pass the selection.
- nTPC = -127.0 if track was not selected by ALEPH. In MITHIG nTuples all tracks with nTPC != -127.0 pass the selection.

