Isolated photon production and pion-photon correlations in high-energy pp and pA collisions

Michal Šumbera^{a,b}

(a) Nuclear Physics Inst. ASCR, 25068 Řež/Prague, Czech Republic (b) In collaboration with Victor Goncalves, Yuri Lima and Roman Pasechnik

International Conference on High Energy Physics, Prague 28 July - 6 August, 2020

Isolated photon production in *pp* and *pA* collisions

- The isolated (prompt) γ production in pp and pA high-energy collisions represents an attractive and clean probe in soft and pQCD regimes as well as nuclear effects and medium-induced QCD phenomena.
- It can be used to set constraints on PDFs in specific kinematic domains not sufficiently well explored by HERA (focus of ongoing and planned measurements at the LHC and RHIC).
- At very low-*x* the primordial transverse momentum evolution of incoming partons and non-linear QCD effects such as gluon saturation start to play a significant role whose reliable first-principle analysis represents a long-standing theoretical challenge.
- Experiments at the LHC [1] and at RHIC [2] are planning to extend their capabilities in the forward region to access low-x physics.

S. Acharya *et al.* [ALICE Collaboration], Phys. Rev. C **99**, 024912 (2019).
 G. David, Rept. Prog. Phys. **83**, no.4, 046301 (2020).

Color dipole picture of low-x Deep Inelastic Scattering

At low-x standard DIS proton structure functions F₂ = F_T + F_L can be expressed in terms of total γ^{*}p cross sections σ_{γ*p} = σ_T + σ_L [1]:

 $F_{T,L}(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \sigma_{T,L}(x, Q^2)$ $\sigma_{T,L}(x, Q^2) = \int d^2 \mathbf{r} \int_0^1 dz |\Psi_{T,L}(r, z, Q^2)|^2 \sigma_{q\bar{q}}^N(r, x)$ (1)

where $\Psi_{T,L}$ is wave function for splitting of transverse (T) or longitudinal (L) polarized virtual photon into a $q\bar{q}$ dipole and $\sigma_{a\bar{a}}^{N}(r, x)$ is the dipole-proton cross section.

- Assumption $\sigma_{q\bar{q}}^{N}(r, x) = \sigma_0 g(\frac{r}{R_0(x)})$, where $R_0(x)$ is called saturation radius, leads to geometric scaling model of DIS [2].
- Rescaling the dipole size $r \rightarrow \hat{r} = r/R_0(x)$ in Eq.(1):
 - $\Rightarrow \quad \sigma_{T,L}(x, Q^2) \ \rightarrow \ \sigma_{T,L}(\tau), \text{ where } \tau \equiv Q^2 R_0^2(x) \equiv Q^2 / Q_s^2(x).$
- For r
 → ∞ function g(r
) → 1 (saturates) and σ^N<sub>qq
 </sub>(r, x) → σ₀ becomes the energy independent constant, i.e. reaches the unitarity bound value.

N. N. Nikolaev and B. G. Zakharov, Z. Phys. C49, 607 (1991)
 K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); *ibid* 60, 114023 (1999); PRL 86, 596 (2001)

M. Sumbera Isolated photon production and pion-photon correlations in high-energy pp and pA collisio

Color dipole picture of low-x Deep Inelastic Scattering

At low-x standard DIS proton structure functions F₂ = F_T + F_L can be expressed in terms of total γ^{*}p cross sections σ_{γ*p} = σ_T + σ_L [1]:

 $F_{T,L}(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \sigma_{T,L}(x,Q^2)$ $\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz |\Psi_{T,L}(r,z,Q^2)|^2 \sigma_{q\bar{q}}^N(r,x)$ (1)

where $\Psi_{T,L}$ is wave function for splitting of transverse (T) or longitudinal (L) polarized virtual photon into a $q\bar{q}$ dipole and $\sigma_{q\bar{q}}^{N}(r, x)$ is the dipole-proton cross section.

- Assumption $\sigma_{q\bar{q}}^{N}(r, x) = \sigma_0 g(\frac{r}{R_0(x)})$, where $R_0(x)$ is called saturation radius, leads to geometric scaling model of DIS [2].
- Rescaling the dipole size $r \rightarrow \hat{r} = r/R_0(x)$ in Eq.(1):
 - $\Rightarrow \quad \sigma_{T,L}(x, Q^2) \ \rightarrow \ \sigma_{T,L}(\tau), \text{ where } \tau \equiv Q^2 R_0^2(x) \equiv Q^2/Q_s^2(x).$
- For r
 [^]→∞ function g(r
 [^])→1 (saturates) and σ^N<sub>qq
 [^]qn
 [^](r,x)→σ₀ becomes
 the energy independent constant, i.e. reaches the unitarity bound value.
 </sub>

N. N. Nikolaev and B. G. Zakharov, Z. Phys. C49, 607 (1991)
 K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); *ibid* 60, 114023 (1999); PRL 86, 596 (2001)

Color dipole model in pp and p(d)A collisions

- Color dipole model (CDM) in $\textit{dA}
 ightarrow \pi$
- J. Nemchik, et al., Nuclear suppression at large forward rapidities in d-Au collisions at relativistic and ultrarelativistic energies, Phys. Rev. C 78, 025213 (2008).
- J. Nemchik and M. Sumbera, *Physics of Large-x Nuclear Suppression*, Nucl. Phys. A **830**, 611C-614C (2009).
- CDM in $pp/pA \rightarrow \ell^+ \ell^-$ and $pp/pA \rightarrow Z^0$
- E. Basso, et al., Drell-Yan phenomenology in the color dipole picture revisited, Phys. Rev. D **93**, 034023 (2016).
- E. Basso, et al., et al. 'Nuclear effects in Drell-Yan pair production in high-energy pA collisions, Phys. Rev. D **93**, 094027 (2016).
- CDM in heavy quark production in pp
- V. P. Goncalves, et al., Heavy flavor production in high-energy pp collisions: color dipole description, Phys. Rev. D **96**, 014010 (2017).
- CDM in $pp/pA \rightarrow \gamma$
- V. P. Goncalves, et al., Isolated photon production and pion-photon correlations in high-energy pp and pA collisions, Phys. Rev. D 101, 094019 (2020).

Frame-dependent description of prompt γ production

- Cross section of prompt
 γ production is Lorentz invariant but its partonic interpretation is frame-dependent.
- In the cms frame it occurs via Compton scattering, in the lab frame it appears as photon Bremsstrahlung off a fast projectile quark q_f propagating through the low-x color field of the target T.p

Figure 1: Bremsstrahlung of photon off a projectile a quark (antiquark) of flavour *f* either after (left) and before (right) its interaction with the color field of the target (denoted by a shaded circle), respectively.

• N.B. Lifetime $\Delta \tau_{lab}$ of partonic fluctuation in the lab frame is enhanced with respect to that in the cms: $\Delta \tau_{lab} \approx \sqrt{s}/m_p \times \Delta \tau_{cms}$ effectively accounting for the higher-order QCD corrections [1,2].

[1] J. Raufeisen, J.-C. Peng and G. C. Nayak, Phys. Rev. D 66, 034024 (2002).

[2] M. B. Johnson et al., Phys. Rev. C 75, 035206 (2007).

Relating γ production to DIS via color dipole model

- For √s ≫ m_c, m_b the prompt γ production can be formulated in the lab frame using the same color dipole cross section used in low-x DIS [1].
- The amplitudes for scattering of $|q\rangle$ and $|q\gamma\rangle$ Fock states off the target *T*, see Fig. 1, interfere. The matrix element squared integrated over the impact parameter of the initial quark expressed in terms of the universal dipole-target cross section $\sigma_{a\bar{a}}^{T}(\Delta \mathbf{r}, x)$ gives:

$$\frac{d\sigma^{f}(qT \rightarrow q\gamma X)}{d\ln \alpha d^{2}p_{T}} = \frac{1}{(2\pi)^{2}} \int d^{2}\rho_{1} d^{2}\rho_{2} e^{i\mathbf{p}_{T} \cdot (\rho_{1} - \rho_{2})} \Psi(\alpha, \rho_{1}, m_{f}) \Psi^{*}(\alpha, \rho_{2}, m_{f}) \\ \times \frac{1}{2} \Big[\sigma_{q\bar{q}}^{T}(\alpha \rho_{1}, x_{2}) + \sigma_{q\bar{q}}^{T}(\alpha \rho_{2}, x_{2}) - \sigma_{q\bar{q}}^{T}(\alpha |\rho_{1} - \rho_{2}|, x_{2}) \Big]$$

where m_f is the constituent quark mass, and $\Psi(\alpha, \rho, m_f)$ is the LC wave function of the real photon radiation off a quark with flavor *f*.

• N.B. Due to the γ Bremsstrahlung the final quark gets a transverse shift relative to the initial one, $\Delta \mathbf{r} = \alpha \rho$, where α is the fractional LC momentum taken by the radiated photon off the projectile quark and ρ is the transverse separation between quark and photon.

$$\frac{d\sigma(p\,T\to\gamma X)}{d^2p_Td\eta} = \frac{2p_T\cosh(\eta)}{\sqrt{s}} \frac{x_1}{x_1+x_2} \sum_f \int_{x_1}^1 \frac{d\alpha}{\alpha^2} \left[q_f(\frac{x_1}{\alpha},\mu_F^2) + \bar{q}_f(\frac{x_1}{\alpha},\mu_F^2) \right] \frac{d\sigma'(q\,T\to q\gamma X)}{d\ln\alpha d^2p_T}$$

 p_T , η and $x_F = x_1 - x_2$ are the transverse momentum, pseudorapidity and the Feynman variable of the photon.

 $x_{1,2} = \frac{p_T}{\sqrt{s}} e^{\pm \eta} - LC$ (longitudinal) momentum fractions of the isolated photon, taken from the incoming proton momenta $p_{1,2}$.

 $q_f(\bar{q}_f), f = u, d, s, c$ – unpolarised projectile quark (antiquark) collinear PDFs as functions of the momentum fraction of the projectile quark taken from the parent nucleon $x_q = x_1/\alpha$ and the QCD factorisation scale $\mu_F = p_T \equiv |\mathbf{p}_T|$.

Color dipole cross section models: proton target

- Dipole cross section models used: GBW, CGC, AAMQS.
- GBW: K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); 60, 114023 (1999); PRL 86, 596 (2001)

$$\sigma_{q\bar{q}}^{p}(\boldsymbol{r},\boldsymbol{x}) = \sigma_{0} \left[1 - e^{-\frac{r^{2}Q_{s,p}^{2}(\boldsymbol{x})}{4}} \right], Q_{s,p}^{2}(\boldsymbol{x}) = Q_{0}^{2} \left(\frac{x_{0}}{\boldsymbol{x}}\right)^{\lambda}$$

CGC: Saturation model for $\sigma_{q\bar{q}}^{p}(r, x)$ based upon the Color Glass Condensate E. Iancu, K. Itakura, S. Munier, Phys. Lett. B **590**, 199 (2004)

$$\sigma_{q\bar{q}}^{p}(r,x) = \sigma_{0} \times \begin{cases} \mathcal{N}_{0} \left(\frac{r Q_{s,p}}{2}\right)^{2\left(\gamma_{s} + \frac{\ln\left(2/rQ_{s,p}\right)}{\kappa \lambda Y}\right)} & r Q_{s,p} \leq 2\\ 1 - \exp^{-A \ln^{2}\left(B r Q_{s,p}\right)} & r Q_{s,p} > 2 \end{cases}$$
(1)

 $\kappa = \chi''(\gamma_s)/\chi'(\gamma_s)$, where χ is the LO BFKL characteristic function. The coefficients *A* and *B* are uniquely determined from the continuity condition for the dipole cross section and its derivative with respect to $r Q_{s,p}$ at $r Q_{s,p} = 2$.

AAMQS: Solution of the Balitsky-Kovchegov equation with running coupling obtained in J. L. Albacete *et al.*, Eur. Phys. J. C **71**, 1705 (2011) and initial conditions constrained by a fit to the HERA DIS data.

Color dipole cross section models: nuclear target

Glauber-Mueller (GM) approach [1, 2]: resummation of all the multiple elastic rescattering diagrams for the qq dipole propagation through the nuclear target.

$$\sigma_{q\bar{q}}^{A}(r,x) = 2 \int d^2 b_A \left\{ 1 - \exp\left[-\frac{1}{2}\sigma_{q\bar{q}}^{p}(r,x) T_A(b_A)\right] \right\}$$

where $T_A(b_A)$ is the nuclear thickness function and b_A is the impact parameter of the dipole with respect to the nucleus centre with the amplitude of $q\bar{q} - A$ scattering given by:

$$\Gamma^{A}_{q\bar{q}}[\vec{b}_{A};(\vec{s}_{j},z_{j})] = 1 - \prod_{k=1}^{n} \left[1 - \Gamma^{p}_{q\bar{q}}(\vec{b}_{A}-\vec{s}_{k}) \right]; \ \sigma^{p}_{q\bar{q}} = 2 \int d^{2}b \operatorname{Re}\Gamma^{p}_{q\bar{q}}$$

Solution the running-coupling Balitsky-Kovchegov (rcBK) equation for the nuclear case [3, 4] which takes into account mutual interactions of the gluonic ladders exchanged between the dipole and the nucleus.

[1] R. J. Glauber and G. Matthiae, Nucl. Phys. B 21, 135 (1970).

[2] A. H. Mueller, Nucl. Phys. B 335, 115 (1990).

- [3] K. Dusling et al., Nucl. Phys. A 836, 159 (2010).
- [4] T. Lappi and H. Mantysaari, Phys. Rev. D 88, 114020 (2013).

M. Šumbera Isolated photon production and pion-photon correlations in high-energy pp and pA collisio

Isolated photons at midrapidity: RHIC at $\sqrt{s} = 0.2$ TeV

Figure 2: The isolated photon p_T -spectra in pp collisions at $\sqrt{s} = 0.2$ TeV and $\eta = 0$, obtained using the different models for the dipole cross section. Experimental data are from S. S. Adler *et al.*, Phys. Rev. Lett. **98**, 012002 (2007) and A. Adare *et al.*, Phys. Rev. D **86**, 072008 (2012).

Isolated photons at large η : RHIC at $\sqrt{s} = 0.5$ TeV

V. P. Goncalves et. al., Phys. Rev. D 101, 094019 (2020)

Figure 3: The isolated photon p_T -spectra in pp collisions at $\sqrt{s} = 0.5$ TeV for $\eta = 2$ (left) and $\eta = 4$ (right) using the different models for the dipole cross section.

Isolated photons at large η : LHC at $\sqrt{s} = 14$ TeV

V. P. Goncalves et. al., Phys. Rev. D 101, 094019 (2020)

Figure 4: The isolated photon transverse-momentum spectra in *pp* collisions at $\sqrt{s} = 14$ TeV for $\eta = 4$ (left) and $\eta = 6$ (right) using the different models for the dipole cross section.

Nuclear modification factor R_{pA} at $\sqrt{s_{NN}} = 8.8$ TeV

$$R_{pA} = \frac{\sigma_{inel}^{pp}}{< N_{bin} > \sigma_{hadr}^{pA}} \frac{E \frac{d^3 \sigma}{dp^3} (p+A \rightarrow \gamma + X)}{E \frac{d^3 \sigma}{dp^3} (p+p \rightarrow \gamma + X)}$$

V. P. Goncalves et. al., Phys. Rev. D 101, 094019 (2020)

Figure 5: p_T -dependence of the nuclear modification factor R_{pA} for isolated photon production in *pPb* collisions at the LHC ($\sqrt{s_{NN}} = 8.8$ TeV) for several selected values of the photon pseudorapidity η and for two distinct (GM and rcBK) models of the dipole-nucleus cross section.

Photon/dilepton - hadron correlations: Motivation

 In both pA and pp collisions photon/DY production is accompanied by hadron production from fragments of the quark which radiated γ/γ*.

Figure from A. Staśto et al., Phys. Rev. D 86, 014009 (2012).

- Quark, in order to radiate the photon, has to acquire its p_T via multiple gluon exchanges with the target. When the target color field becomes dominated by low-x gluons with $k_T^g \sim Q_s$ one expects that for $m_T(x) \gtrsim Q_s(x)$ suppression of $\gamma^* h$ correlation at $\Delta \phi \approx \pi$ takes place*.
- \Rightarrow Study γ^* -h azimuthal correlations.
- *) A. Staśto *et al.*, Phys. Rev. D86, 014009 (2012)

M. Šumbera Isolated photon production and pion-photon correlations in high-energy pp and pA collisio

Photon - hadron azimuthal correlation function $C(\Delta \phi)$

• $C(\Delta \phi)$ – coincidence probability per trigger particle γ :

$$C(\Delta\phi) = \frac{2\pi \int_{\rho_T, \rho_T^h > \rho_T^{cut}} dp_T \rho_T \ dp_T^h \rho_T^h \ \frac{d\sigma(\rho T \to h\gamma X)}{d\eta dy_h d^2 \rho_T d^2 \rho_T^h}}{\int_{\rho_T > \rho_T^{cut}} d\rho_T \rho_T \ \frac{d\sigma(\rho T \to \gamma X)}{d\eta d^2 \rho_T}}$$

where p_T^{cut} is experimental lower cut-off on p_T of γ and of hadron p_T^h and $\Delta \phi$ is the angle between them.

• To describe interactions of the incoming quark with the target color field we employ unintegrated gluon distribution function (UGDF): $F(x_q, k_T^g) = [\pi Q_s^2(x_q)]^{-1} \exp(-k_T^{g^2}/Q_s^2(x_q)), Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$ [1]

 $x_{g} = x_{1} e^{-2Y} + \frac{x_{h}}{z_{h}} e^{-2y_{h}}, \quad \mathbf{k}_{T}^{q} = \frac{\mathbf{p}_{T}^{h}}{z_{h}}, \quad \mathbf{k}_{T}^{g} = \mathbf{p}_{T} + \mathbf{k}_{T}^{q}, \quad \mathbf{P}_{T} = (1 - z)\mathbf{p}_{T} - z\mathbf{k}_{T}^{q}$

KKP fragmentation function D_{h/f}(z_h, μ_F²) of a quark with a flavor f into a neutral pion h = π⁰ was used [2]. We assume μ = μ_F.

[1] $Q_0^2 = 1 \text{ GeV}^2$, $x_0 = 3.04 \times 10^{-4}$, $\lambda = 0.288$, $\sigma_0 = 23.03 \text{ mb from fit to DIS data.}$ [2] B. A. Kniehl, G. Kramer and B. Potter, Nucl. Phys. B **582**, 514 (2000).

γ^* - π azimuthal correlations in *dAu*@RHIC

Similarly to Staśto *et al.* the away-side double-peak structure shows up in dAu.
 Independently of the factorization scale µ_F choice ⇒ it is expected also for pp.

γ^* - π azimuthal correlations in *pp*@RHIC

• Away-side double-peak structure is present also in pp collisions at RHIC.

• Shows up both in Fwd-Fwd and Centr-Fwd correlations \Rightarrow is measurable!

• Centr-Fwd correlations are by two orders in magnitude smaller than Fwd-Fwd.

M. Šumbera Isolated photon production and pion-photon correlations in high-energy pp and pA collisio

$\gamma - \pi^0$ azimuthal correlations in *pp* and *pAu* at RHIC

V. P. Goncalves et. al., Phys. Rev. D 101, 094019 (2020)

Figure 6: The correlation function $C(\Delta \phi)$ for the associated isolated photon at forward rapidity $\eta = 3$ and pion production at midrapidity (left) and at forward rapidity (right) in *pp* and *pAu* collisions at RHIC $\sqrt{s_{NN}} = 0.2$ TeV.

$\gamma - \pi^0$ azimuthal correlations in *pA* at the LHC

Figure 7: The correlation function $C(\Delta \phi)$ for the associated photon and pion production in *pA* collisions at the LHC ($\sqrt{s_{NN}} = 8.8 \text{ TeV}$) for different nuclei.

Growth of the saturation scale $Q_{s,A}(x) \propto A^{1/3}$ leads to de-correlation and hence to $C(\Delta \phi = \pi) \sim A^{-0.2}$.

Dependence of $C(\Delta \phi)$ on the model of UGDF

Figure 8: $C(\Delta \phi)$ in *pp* collisions at the LHC for two different models (GBW and AAMQS) of the UGDF in the proton target.

Both models predict a similar behavior and differ mainly in the region dominated by the leading jet fragmentation.

Conclusions

- Detailed phenomenological analysis of prompt photon production at RHIC and LHC energies in the framework of color dipole approach was presented.
- ► Three/two different phenomenological saturation models for the dipoletarget scattering (GBW, CGC, AAMGS) / (GM, rcBK) were used to analyse p_T spectra of prompt photons in pp/pA collisions.
- ▶ Both in *pA* and *pp* we have found a characteristic double-peak structure of the correlation function $C(\Delta \phi)$ around $\Delta \phi \approx \pi$ between back-to-back produced real photons and hadrons (pions) emerging either at large forward rapidities or, to a lesser extent, when one of the particles is at midrapidity.
- ► The double peak around $\Delta \phi \approx \pi$ appears to be strongly sensitive to the details of theoretical modelling of the saturation phenomena in QCD.
- ► Measurement of C(\Delta\phi) at different energies at the RHIC and the LHC can be useful when probing the underlying dynamics by setting even stronger constraints on the saturation physics.

Back up slides

Mapping the k_T^g contribution to $C(\Delta \phi)$

Figure from D. Zaslavsky, arXiv:1409.8259 [hep-ph].

- Contributions of different k_T^q , the transverse momentum acquired by the quark as it interacts with the gluon field of the target, to $C(\Delta\phi)$. Left RHIC (M=0.5GeV), right LHC (M=4.GeV).
- There is a sharp transition between the momenta that contribute to the central back-to-back emission peak and those that contribute to the parallel emission peak. For the RHIC that transition is around 1 GeV and for the LHC between 10 GeV and 100 GeV.

DY: Color dipole approach vs. NLO pQCD calculations

ATLAS data: G. Aad et al., JHEP 1406, 112 (2014)

Confirms previous observation^[1,2] that dipole approach effectively accounts for higher order pQCD corrections

J. Raufeisen, J.-C. Peng and G. C. Nayak, Phys. Rev. D 66, 034024 (2002);
 M. B. Johnson *et al.* Phys. Rev. C 75, 035206 (2007); M. B. Johnson *et al.* ibid C 75, 064905 (2007).