Measurements of the Absolute Branching Fractions of $B^{ \pm} \rightarrow K^{ \pm} X_{c \bar{c}}$ $\frac{\text { PRL } 124152001 \text { (2020) }}{\text { Fergus Wilson }}$

Particle Physics Department
Rutherford Appleton Laboratory/STFC United Kingdom

On behalf of the BABAR collaboration
ICHEP 2020, July $28^{\text {th }}$ - August $6^{\text {th }}$, Prague, Czech Republic

Exotic XYZ charmonium-like states

Exotic XYZ charmonium-like states

QCD allows for complex structure beyond $c \bar{c}$ mesons and ccc baryons.
Many "exotic" charmonium-like states have been discovered in recent years.
Some do not fit into the predicted framework of $c \bar{c}$ mesons; their masses and/or decay products do not correspond to those expected for the yet undiscovered non-exotic states.

The X, Y, and Z particles

States with a $c \bar{c}$ or $b \bar{b}$:
Y mesons: $J^{P C}=1^{--}$
Z mesons: Isospin 1 (can have $q= \pm 1$)
X mesons: all the rest

From N. Brambilla et al., Physics Reports (in preparation)

The $X(3872)$ state (also known as $\chi_{c 1}(3872)$ in PDG)

This decay has been measured by many experiments: BABAR, Belle, CDF, BES-III, LHCb, ...

BES-III (2014)

$\underline{\text { LHCb (2020) }}$

- Belle PRD 97, (2018) 012005 [1]: $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right)<2.6 \times 10^{-4}$
- $X(3872)$ has a much narrower width $\left(\Gamma=0.96_{-0.18}^{+0.19} \pm 0.21 \mathrm{MeV}[2]\right)$ than other $X Y Z$ states $(\Gamma=[40-180] \mathrm{MeV})$.
- Narrowness of the $X(3872)$ makes it an excellent candidate for a missing mass analysis

Interpretation of the $X Y Z$ and $X(3872)$ states

Possible XYZ explanations

- Tetraquarks: $(q q)(\overline{q q})$ mesons; Pentaquarks: $(q q)(q q) \bar{q}$ baryons; H-dibaryon: $(q q)(q q)(\overline{q q})$ mesons
- Molecule: bound states of color-singlet standard hadrons
- Glueballs: mesons composed of gluons only.
- Hybrid: q, \bar{q}, and gluon.

$X(3872)$ explanations and predictions

- Options: hybrids, glueball, and charmonium-molecule

- $D^{0}-\bar{D}^{* 0}$ molecule: $\mathcal{B}\left(X(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}\right) \approx 10 \%$ [3]
- Tetraquark: $\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \geq 50 \%$ [4]

Reviews

N. Brambilla et al., Phys. Reports 2020 (in preparation), J. S. Olsen et al., Mod Phys 90 (2018) 015003,
H. X. Chen et al., Phys. Report. 639 (2016) 1

Absolute branching fraction $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right)$

Exclusive 2-body B-meson decays of the form $B^{ \pm} \rightarrow K^{ \pm} X_{c \bar{c}}, X_{c \bar{c}} \rightarrow f$ have been published:
Measure the product $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X_{c \bar{c}}\right) \times \mathcal{B}\left(X_{c \bar{c}} \rightarrow f\right)$
Do not measure $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X_{c \bar{c}}\right)$ or $\mathcal{B}\left(X_{c \bar{c}} \rightarrow f\right)$
Knowledge of exotic decay $\mathcal{B}(X(3872) \rightarrow f)$ would help in $X(3872)$ interpretation.

- $J / \psi: f=e^{+} e^{-}, \mu^{+} \mu^{-}$
- $\chi_{c J=0,1,2}(1 P): f=J / \psi \pi^{+} \pi^{-}, J / \psi \gamma$
- $\eta_{c}: f=K^{+} K^{-} \pi^{0}$, etc.
- X(3872): $f=J / \psi \pi^{+} \pi^{-}$, etc.

BABAR Detector at PEP-II

Asymmetric beam momenta, $E_{\mathrm{CM}}=10.58 \mathrm{GeV}$, low multiplicity, low background, K / π particle identification, good μ and e identification.

Data sample: $\sim 424 \mathrm{fb}^{-1}$ at $\Upsilon(4 S)$ resonance $\Upsilon(4 S)$ decays to $B^{+} B^{-}$or $B^{0} \bar{B}^{0} \sim 100 \%$
BABAR Detector

Drift Chamber

Electromagnetic
Calorimeter

Method - Hadronic Tagging

- "Hadronic Tag": Fully reconstruct a B meson in $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ (" $B_{\text {tag }}$ ").
- $B_{\text {tag }} \rightarrow S Y$ with

$$
\begin{aligned}
& S=D^{(*) 0}, D^{(*) \pm}, D_{s}^{(*) \pm}, J / \psi \\
& Y=\text { combinations of } \pi^{ \pm}, K^{ \pm}, \pi^{0} \text { and } K_{\mathrm{S}}^{0}
\end{aligned}
$$

- Accept $B_{\text {tag }} \rightarrow S Y$ channels with purity >0.08
- Select events with an identified $K^{ \pm}$in the other B meson decay (" $B_{\text {sig }}$ ").

Method and Improvements

(1) Boost to center-of-mass (CM) of the " $B_{\text {sig }}$ "
(2) Plot $K^{ \pm}$momentum in the 2-body $B \rightarrow K^{ \pm} X_{c \bar{c}}$ decay; related to the missing mass m_{X}

$$
m_{X}=\sqrt{m_{B}^{2}+m_{K}^{2}-2 E_{K} m_{B}} \quad E_{K}=\text { energy of } K^{ \pm} \text {in } B_{\text {sig }} C M
$$

(3) $X_{c \bar{c}}$ resonances appear as peaks in the $K^{ \pm}$momentum distribution
(4) Search for $X(3872)$ in $K^{ \pm}$momentum distribution and determine absolute $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right)$ directly; no knowledge of the $X(3872) \rightarrow f$ decay needed
(5) Use already known product $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right) \times \mathcal{B}(X(3872) \rightarrow f)$ to determine $\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)$

Improvements over earlier BABAR analysis (PRL 96052002 (2006))

- A factor 2 increase in data sample size $\left(211 \mathrm{fb}^{-1} \rightarrow 424 \mathrm{fb}^{-1}\right)$.
- A factor 3 increase in $X(3872)$ signal reconstruction efficiency:
- Mainly by keeping all $B_{\text {tag }}$ candidates in an event (not just one)
- Also improved hadronic tagging algorithm and background evaluation

Background Rejection and Signal Extraction

- Increase in $B^{ \pm} \rightarrow K^{ \pm} X_{c \bar{c}}$ reconstruction efficiency leads to more background
- Use two Neural Nets to reduce background from:
(1) Continuum events $e^{+} e^{-} \rightarrow q \bar{q}$, mainly based on event shape difference.
(2) $B^{ \pm} \rightarrow K^{ \pm} X_{\kappa \bar{c}}$ signal events with a secondary $K^{ \pm}$, mainly based on isolation of $K^{ \pm}$in $B_{\text {sig }} C M$.
- Fit a 5th order Chebychev polynomial to background, interpolating between "resonance-free" regions.
- Apply a binned maximum-likelihood fit to the background-subtracted $K^{ \pm}$distribution.
- Fitted resonances: $9 X_{c \bar{c}}: J / \psi, \eta_{c}, \psi(2 S)$,
 $\chi_{c J=0,1,2}(1 P), \psi(3770), \eta_{c}(2 S), X(3872)$.
- Widths from MC, position from PDG [5].

Results

Particle	Yield	$\mathcal{B}\left(10^{-4}\right)$	N_{σ}
J / ψ	2364 ± 189	10.1 ± 0.29 (Ref. [21])	10.4
η_{c}	2259 ± 188	9.6 ± 1.2 (stat) $\pm 0.6($ syst $)$	9.3
$\chi_{c 0}$	287 ± 181	$2.0 \pm 1.3($ stat $) \pm 0.3$ (syst)	1.6
$\chi_{c 1}$	1035 ± 193	$4.0 \pm 0.8($ stat $) \pm 0.6($ syst $)$	2.2
$\chi_{c 2}$	200 ± 164	<2.0	1.2
$\eta_{c}(2 S)$	527 ± 271	$3.5 \pm 1.7($ stat $) \pm 0.5($ syst $)$	2.3
ψ^{\prime}	1278 ± 285	$4.6 \pm 1($ stat) ± 0.7 (syst)	3.1
$\psi(3770)$	497 ± 308	3.2 ± 2.0 (stat) ± 0.5 (syst)	1.2
$X(3872)$	992 ± 285	$2.1 \pm 0.6($ stat $) \pm 0.3($ syst $)$	3.0

\mathcal{B} compatible with Belle [1] measurements Main systematic: $p_{K^{ \pm}}$background shape

Using J / ψ and $X(3872)$ yields and reconstruction efficiencies:

$$
=>\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right)=\left(2.1 \pm 0.6_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}
$$

From PDG: $\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} X(3872)\right) \times \mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(8.6 \pm 0.8) \times 10^{-6}$

$$
=>\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(4.1 \pm 1.3) \%
$$

Summary

- Results published in PRL 124, 152001 (2020)
- First absolute measurement of $\mathcal{B}\left(B^{+} \rightarrow K^{ \pm} X(3872)\right)$ based on a hadronic tag and missing mass:

$$
\mathcal{B}\left(B^{+} \rightarrow K^{ \pm} X(3872)\right)=\left(2.1 \pm 0.6_{\text {stats }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}
$$

- First determination of $\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)$:

$$
\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(4.1 \pm 1.3) \%
$$

- Rules out simple tetraquark model, which predicts $\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \geq 50 \%$
- Molecular models, which predict $\mathcal{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \leq 10 \%$, are more consistent.
- However, pure molecular models have problems with branching fractions in radiative decays. Could indicate hybrid molecular models worthwhile pursuing.
- Can combine \mathcal{B} with measured $\Gamma_{X(3872)}$ [2] to extract partial widths.
- Method can be applied to other $X(3872) \rightarrow f$ final states.

References

[1] Belle Collaboration, Y. Kato et al., Measurements of the absolute branching fractions of $B^{+} \rightarrow X_{c \bar{c}} K^{+}$and $B^{+} \rightarrow \bar{D}^{(*) 0} \pi^{+}$at Belle, Phys. Rev. D 97 (2018) 012005.
[2] LHCb Collaboration, R. Aaij et al., Study of the $\psi_{2}(3823)$ and $\chi_{c 1}(3872)$ states in $B^{+} \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right) K^{+}$decays, Tech. Rep. arXiv:2005.13422. LHCB-PAPER-2020-009, CERN, Geneva, May, 2020.
[3] E. Braaten and M. Kusunoki, Decays of the $X(3872)$ into J / ψ and light hadrons, Phys. Rev. D 72 (2005) 054022.
[4] N. A. Tornqvist, Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson, Physics Letters B 590 (2004) 209
[5] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev. D 98 (2018) 030001, and 2019 update.

