Measurements of the Absolute Branching Fractions of $B^{\pm} \rightarrow K^{\pm} X_{c\bar{c}}$ <u>PRL 124 152001 (2020)</u> Fergus Wilson

Particle Physics Department Rutherford Appleton Laboratory/STFC United Kingdom

On behalf of the BABAR collaboration

ICHEP 2020, July 28th - August 6th, Prague, Czech Republic

Fergus Wilson (RAL/STFC)

Exotic XYZ charmonium-like states

Exotic XYZ charmonium-like states

QCD allows for complex structure beyond $c\overline{c}$ mesons and ccc baryons.

Many "exotic" charmonium-like states have been discovered in recent years.

Some do not fit into the predicted framework of $c\overline{c}$ mesons; their masses and/or decay products do not correspond to those expected for the yet undiscovered non-exotic states.

The X, Y, and Z particles

States with a $c\overline{c}$ or $b\overline{b}$: Y mesons: $J^{PC} = 1^{--}$ Z mesons: Isospin 1 (can have $q = \pm 1$) X mesons: all the rest

Fergus Wilson (RAL/STFC)

The X(3872) state (also known as $\chi_{c1}(3872)$ in PDG)

This decay has been measured by many experiments: BABAR, Belle, CDF, BES-III, LHCb, ...

- Belle PRD 97, (2018) 012005 [1]: $\mathcal{B}(B^{\pm} \to K^{\pm}X(3872)) < 2.6 \times 10^{-4}$
- X(3872) has a much narrower width ($\Gamma = 0.96^{+0.19}_{-0.18} \pm 0.21 \text{ MeV}$ [2]) than other XYZ states ($\Gamma = [40 180] \text{ MeV}$).

• Narrowness of the X(3872) makes it an excellent candidate for a missing mass analysis

Interpretation of the XYZ and X(3872) states

Possible XYZ explanations

- Tetraquarks: (qq)(qq) mesons; Pentaquarks: (qq)(qq)q baryons; H-dibaryon: (qq)(qq)(qq) mesons
- Molecule: bound states of color-singlet standard hadrons
- Glueballs: mesons composed of gluons only.
- Hybrid: q, \overline{q} , and gluon.

X(3872) explanations and predictions

- Options: hybrids, glueball, and charmonium-molecule
- $D^0 \overline{D}^{*0}$ molecule: $\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) \approx 10\%$ [3]
- Tetraquark: $\mathcal{B}(X(3872) \rightarrow J/\psi \pi^+\pi^-) \geq 50\%$ [4]

Reviews

N. Brambilla et al., Phys. Reports 2020 (in preparation), J. S. Olsen et al., Mod Phys 90 (2018) 015003,

H. X. Chen et al., Phys. Report. 639 (2016) 1

Fergus Wilson (RAL/STFC)

Absolute branching fraction $\mathcal{B}(B^{\pm} \rightarrow K^{\pm}X(3872))$

Exclusive 2-body *B*-meson decays of the form $B^{\pm} \to K^{\pm}X_{c\overline{c}}, X_{c\overline{c}} \to f$ have been published: Measure the product $\mathcal{B}(B^{\pm} \to K^{\pm}X_{c\overline{c}}) \times \mathcal{B}(X_{c\overline{c}} \to f)$ Do not measure $\mathcal{B}(B^{\pm} \to K^{\pm}X_{c\overline{c}})$ or $\mathcal{B}(X_{c\overline{c}} \to f)$ Knowledge of exotic decay $\mathcal{B}(X(3872) \to f)$ would help in X(3872) interpretation.

• J/ψ : $f = e^+e^-, \mu^+\mu^-$

•
$$\chi_{cJ=0,1,2}(1P)$$
: $f=J\!/\psi\,\pi^+\pi^-$, $J\!/\psi\,\gamma$

•
$$\eta_c$$
: $f = K^+ K^- \pi^0$, etc.

• X(3872):
$$f = J/\psi \pi^+ \pi^-$$
, etc.

• ...

BABAR Detector at PEP-II

Asymmetric beam momenta, $E_{\rm CM} = 10.58 \, {\rm GeV}$, low multiplicity, low background, K/π particle identification, good μ and e identification.

Method - Hadronic Tagging

- Ť
- "Hadronic Tag": Fully reconstruct a *B* meson in $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ (" B_{tag} ").
- $B_{\text{tag}} \rightarrow SY$ with $S = D^{(*)0}, D^{(*)\pm}, D_s^{(*)\pm}, J/\psi$ $Y = \text{ combinations of } \pi^{\pm}, K^{\pm}, \pi^0 \text{ and } K_{\text{s}}^0$
- Accept $B_{
 m tag}
 ightarrow SY$ channels with purity > 0.08
- Select events with an identified K^{\pm} in the other *B* meson decay (" B_{sig} ").

Method and Improvements

(1) Boost to center-of-mass (CM) of the " $B_{\rm sig}$ "

2 Plot K^{\pm} momentum in the 2-body $B \to K^{\pm} X_{c\overline{c}}$ decay; related to the missing mass m_X

$$m_X = \sqrt{m_B^2 + m_K^2 - 2E_K m_B}$$
 E_K = energy of K^{\pm} in $B_{\rm sig}$ CM.

(3) $X_{c\overline{c}}$ resonances appear as peaks in the K^{\pm} momentum distribution

Search for X(3872) in K^{\pm} momentum distribution and determine absolute $\mathcal{B}(B^{\pm} \to K^{\pm}X(3872))$ directly; no knowledge of the X(3872) $\to f$ decay needed

Solution Use already known product $\mathcal{B}(B^{\pm} \to K^{\pm}X(3872)) \times \mathcal{B}(X(3872) \to f)$ to determine $\mathcal{B}(X(3872) \to J/\psi \pi^{+}\pi^{-})$

Improvements over earlier BABAR analysis (PRL 96 052002 (2006))

- A factor 2 increase in data sample size (211 fb⁻¹ \rightarrow 424 fb⁻¹).
- A factor 3 increase in X(3872) signal reconstruction efficiency:
 - $\bullet\,$ Mainly by keeping all $B_{\rm tag}$ candidates in an event (not just one)
 - Also improved hadronic tagging algorithm and background evaluation

Background Rejection and Signal Extraction

- Increase in $B^{\pm} \to K^{\pm} X_{c\bar{c}}$ reconstruction efficiency leads to more background
- Use two Neural Nets to reduce background from:
 - Continuum events e⁺e⁻ →qq̄, mainly based on event shape difference.
 - $\begin{array}{l} \textcircled{O} & B^{\pm} \rightarrow K^{\pm} X_{c\overline{c}} \text{ signal events with a} \\ \text{ secondary } K^{\pm}, \text{ mainly based on isolation of } \\ K^{\pm} \text{ in } B_{\mathrm{sig}} \text{ CM.} \end{array}$
- Fit a 5th order Chebychev polynomial to background, interpolating between "resonance-free" regions.
- Apply a binned maximum-likelihood fit to the background-subtracted K[±] distribution.
- Fitted resonances: 9 X_{cc̄}: J/ψ, η_c, ψ(25), χ_{cJ=0,1,2}(1P), ψ(3770), η_c(2S), X(3872).
- Widths from MC, position from PDG [5].

Results

Particle	Yield	$\mathcal{B}(10^{-4})$	N_{σ}
J/ψ	2364 ± 189	10.1 ± 0.29 (Ref. [21])	10.4
η_c	2259 ± 188	$9.6 \pm 1.2(\text{stat}) \pm 0.6(\text{syst})$	9.3
Xc0	287 ± 181	$2.0 \pm 1.3(\text{stat}) \pm 0.3(\text{syst})$	1.6
χ_{c1}	1035 ± 193	$4.0 \pm 0.8(\text{stat}) \pm 0.6(\text{syst})$	2.2
Xc2	200 ± 164	< 2.0	1.2
$\eta_c(2S)$	527 ± 271	$3.5 \pm 1.7(\text{stat}) \pm 0.5(\text{syst})$	2.3
ψ'	1278 ± 285	$4.6 \pm 1(\text{stat}) \pm 0.7(\text{syst})$	3.1
$\psi(3770)$	497 ± 308	$3.2 \pm 2.0(stat) \pm 0.5(syst)$	1.2
X(3872)	992 ± 285	$2.1 \pm 0.6(\text{stat}) \pm 0.3(\text{syst})$	3.0

 \mathcal{B} compatible with Belle [1] measurements Main systematic: $p_{K^{\pm}}$ background shape

Using J/ψ and X(3872) yields and reconstruction efficiencies: $=> \mathcal{B}(B^{\pm} \to K^{\pm}X(3872)) = (2.1 \pm 0.6_{\text{stat}} \pm 0.3_{\text{syst}}) \times 10^{-4}$ From PDG: $\mathcal{B}(B^{\pm} \to K^{\pm}X(3872)) \times \mathcal{B}(X(3872) \to J/\psi \pi^{+}\pi^{-}) = (8.6 \pm 0.8) \times 10^{-6}$ $=> \mathcal{B}(X(3872) \to J/\psi \pi^{+}\pi^{-}) = (4.1 \pm 1.3)\%$

Summary

- Results published in PRL 124, 152001 (2020)
- First absolute measurement of B(B⁺ → K[±]X(3872)) based on a hadronic tag and missing mass:

 $\mathcal{B}(B^+ \to K^{\pm}X(3872)) = (2.1 \pm 0.6_{
m stats} \pm 0.3_{
m syst}) \times 10^{-4}$

- First determination of $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-)$: $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) = (4.1 \pm 1.3)\%$
- Rules out simple tetraquark model, which predicts ${\cal B}(X(3872) o J\!/\psi\,\pi^+\pi^-) \ge 50\%$
- Molecular models, which predict $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) \leq 10\%$, are more consistent.
- However, pure molecular models have problems with branching fractions in radiative decays. Could indicate hybrid molecular models worthwhile pursuing.
- Can combine \mathcal{B} with measured $\Gamma_{X(3872)}$ [2] to extract partial widths.
- Method can be applied to other $X(3872) \rightarrow f$ final states.

э

イロト イヨト イヨト

References

- [1] Belle Collaboration, Y. Kato *et al.*, Measurements of the absolute branching fractions of $B^+ \to X_{c\overline{c}}K^+$ and $B^+ \to \overline{D}^{(*)0}\pi^+$ at Belle, Phys. Rev. D **97** (2018) 012005.
- [2] LHCb Collaboration, R. Aaij *et al.*, Study of the $\psi_2(3823)$ and $\chi_{c1}(3872)$ states in $B^+ \rightarrow (J/\psi \pi^+ \pi^-) K^+$ decays, Tech. Rep. arXiv:2005.13422. LHCB-PAPER-2020-009, CERN, Geneva, May, 2020.
- [3] E. Braaten and M. Kusunoki, *Decays of the X*(3872) *into J*/ ψ *and light hadrons*, Phys. Rev. D **72** (2005) 054022.
- [4] N. A. Tornqvist, Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson, Physics Letters B 590 (2004) 209.
- [5] Particle Data Group, M. Tanabashi *et al.*, *Review of particle physics*, Phys. Rev. D 98 (2018) 030001, and 2019 update.