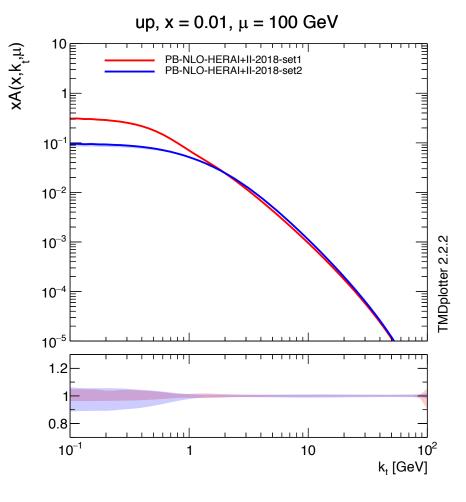
Application of parton branching method to pp processes

ICHEP 2020

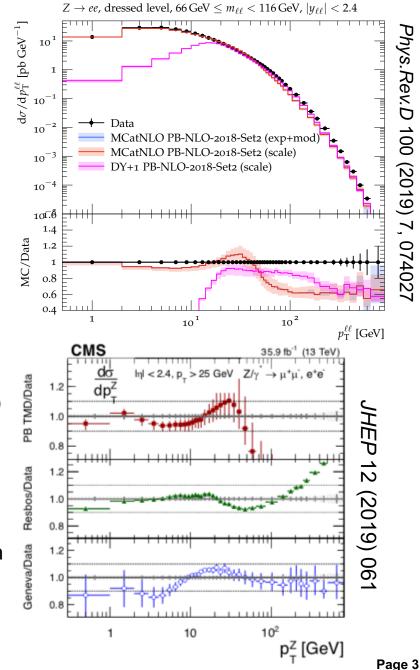
Jindrich Lidrych¹, Patrick L.S. Connor¹, Francesco Hautmann^{2,3}, and Hannes Jung¹

¹ Deutsches Elektronen-Synchrotron
² University of Oxford
³ University of Antwerp



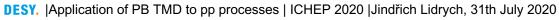
Parton branching method and transverse momentum dependent PDF Introduction

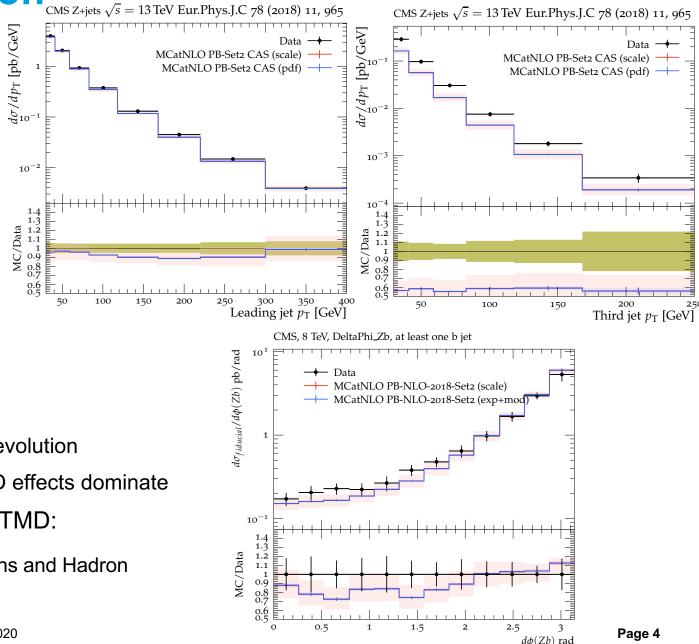
- Transverse momentum dependent (TMD) PDF
 - Small momentum transfer, small x
- Parton branching (PB) method
 - Iterative method to solve the DGLAP evolution equation:
 - Kinematics of the splitting are known
 - Applicable to determine k_T distribution \Rightarrow TMDs
 - Valid at LO, NLO, and NNLO
- TMD distributions from fit to DIS measurements from HERA
 - 3.5 < Q² < 50000 GeV², 4·10⁻⁵ < x < 0.65


Let's take look on application of PB-TMDs to pp processes

Inclusive Drell-Yan production

Application of PB TMD to pp processes


- DY at LHC: precision test of the SM + constraint on PDFs
- NLO MC predictions with PB-TMD:
 - Matrix element (ME) is calculated by Madgraph5_aMC@NLO (MCatNLO)
 - k_T dependence is included by PB-TMDs
 - Dominate uncertainties: scale in ME ($\mu_{\rm F}$ and $\mu_{\rm R}$)
- Reasonable agreement with the measurement at the low $p_{\mathrm{T}}^{\mathrm{Z}}$
 - Competitive with resummed calculations Resbos, Geneva (NNLL accuracy)
 - Higher $p_{\rm T}$ region requires higher jet multiplicity in ME
- More information:
 - Qun Wang's talk: 30th July; Strong Interactions and Hadron Physics session
 - DY at LHC energies: *Phys.Rev.D* 100 (2019) 7, 074027
 - DY at lower \sqrt{s} : *Eur.Phys.J.C* 80 (2020) 7, 598



Differential Z + jets production

Application of PB TMD to pp processes

- Allows more detailed study
 - E.g.: jet multiplicity, jet $p_{\rm T}$ spectrum, azim. corr.
- NLO MC predictions with PB-TMD:
 - Z + 1 jet in ME, other jets are from parton shower
- MC/Data disagreement more visible for higher jet contribution
 - Possible impact of missing higher order correction beyond NLO QCD or missing higher jet multipl. in ME
- Z + HF(*b*-,*c*-tagged) jets
 - $\Delta \phi(Zb)$ decorrelation comes from k_T from initial evolution
 - Reasonable agreement at large $\Delta \phi$, where TMD effects dominate
- More information about multijet merging for PB TMD:
 - Armando Bermudes's talk: 28th July; Strong Interactions and Hadron Physics session

