Jet substructure and boosted jet measurements at CMS

Deniz SUNAR CERCI

Adiyaman - Istanbul University
On behalf of the CMS Collaboration
30th July 2020

QCD at the LHC

- The main goal of QCD studies is to improve our detailed description of the SM physics.
- QCD is the theory of strong interaction describing the interactions between quarks & gluons
- Jets, experimental signature of quarks & gluons, are abundantly produced at the LHC!

Hard QCD - Perturbation theory pQCD - PDFs, ISR, FSR - Parton shower & hadronization Soft QCD - MPI, UE activity - Fragmentation Parton Density Parton Density Jet Jet Jet Parton Density Density Density Density Density Density Density Density Densi

Solid and insightful description of jets and their substructure relies on a deep understanding of the dynamics of strong interactions in collider experiments.

Beam remnants

- Better knowledge of jet substructure will help to improve:
 - Precision measurements involving jets (Higgs, top)
 - BSM searches with boosted objects
 - Flavour tagging, pileup ID

Jets and jet algorithms

- Jets are the product of successive parton branchings.
- Sequantial jet clustering algorithms defined with inter-particle distance & beam distance:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \Delta R_{ij}^2 \qquad d_{iB} = p_{t,i}^{2p} R^2$$

- Behavior controlled with free parameter p:
 - p = 1 k_t algorithm
 - \Rightarrow p = 0 Cambridge/Aachen algorithm
 - p = -1 anti- k_t algorithm

- Typical choice for jets by CMS:
 - R = 0.4 (small cone)
 - R = 0.8 (large cone)

Grooming and jet substructure observables

- Grooming: jet is cleaned up i.e., remove soft and wide-angle radiation → reduce PU/UE contamination
 - Focus on more harder jet core
 - Makes comparison easier with theoretical calculations – removes large logarithms
- Modified mass drop tagger :
 - Arr Condition: min $(p_{T,I}, p_{T,j}) > z_{cut} (p_{T,I} + p_{T,j})$

Jet substructure observables

Hard splitting opening angle

$$R_g = \Delta R (j_1, j_2)$$

lacksquare Groomed jet radius $oldsymbol{ heta}_{ exttt{g}}$

$$\theta_g = \frac{\Delta R (j_1, j_2)}{R_0}$$

- Groomed jet mass M_g
 - Depends on opening angle
 - Small mass: collimated jet, few constituents
 - Large mass: broad jet, many constituents

$$\rho = 2 \log_{10}(\frac{m_g}{p_{T,j}R})$$

Soft drop grooming algorithm

Jets are first reconstructed with anti-k_t algorithm, and then reclustered with the Cambridge-

Aachen scheme to create a pairwise tree of subjets.

Soft-Collinear $\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)$ Soft drop condition: → Collinea: log Recluster Remove if fails with C/A soft drop Measured anti-k_⊤ jet Continue until branching passes Return jet

After C/A finishes: decluster iteratively starting form the last step.

- Differential jet cross section determined as a function of ungroomed and groomed (anti- k_t jets with R = 0.8 and p_T > 200 GeV) in p_T bins
- Dijet-like topology: $(p_{T1}-p_{T2})/(p_{T1}+p_{T2})<0.3$ and $\Delta \phi>\pi/2$

- Higher syst. unc. in ungroomed than groomed jets
- Grooming algorithm considerably lowers the jet mass and suppresses the Sudakov peak
- Improves measurement precision by removing contamination from soft particles and pileup

Jet mass in dijet events: differential jet cross section

- Normalized cross section for ungroomed/groomed jets for all p_T bins
- Theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30% of the jet p_T

Jet substructure in $t\bar{t}$ events

- Top quark pair events
 - abundantly produced at the LHC!
 - ideal probes for jet substructure measurements
 - very rich final states: light quarks, b quarks, gluon with high p_T, boosted W and top
 - High purity, and relatively orthogonal event selection criteria (for lepton + jets event samples)

- Various observables measured
 - generalized angularities, eccentricity, groomed momentum fraction, N-subjettiness ratios, and energy correlation functions

- Samples enriched in jets:
 - inclusive, bottom quarks, light quarks, gluons.
- Charged multiplicity relevant for q/g discrimination
 - differences between the quark- and gluon-enriched samples do not seem to be very strong.

- Comparison to various generators
- Unfolded distributions for charged and charged+neutral particles for all jet samples
 - z_g distribution (first time!)
 - Good data/model agreement in this observable for HERWIG 7; large spread in generator predictions

- Running of top quark mass experimentally investigated for the first time
 - lacktriangle Measure $m_t(\mu)$ as a function of the scale $\mu=m_{tar t}$
 - lacktriangle Perform precise measurements of $\mathsf{d}\sigma_{tar{t}}/\mathsf{d}m_{tar{t}}$
 - \diamond Extract running by comparing to differential theory predictions in \overline{MS} scheme

Measurement compared to NLO predictions in MS scheme obtained with different values of m_t

Extraction of running in $t\bar{t}$ events

• Running $r(\mu)$ is defined as ratio of $m_t(\mu)$ to reference mass $m_t(\mu_{ref})$

Thoery:
$$r(\mu) = m_t(\mu) = m_t(\mu_{ref})$$

Exp. :
$$r_k = m_t (\mu_k) / m_t (\mu_{ref})$$

- r (μ) depends solely on RGE
- \star r_k benefits from cancellation of correlated unc.
- initial scale choice: $\mu_{ref} = \mu_2 = 476 \text{ GeV}$

- lacktriangledown result compared to value of $m_t(\mu)$ extracted at NLO from inclusive $\sigma_{t\bar{t}}$
- good agreement with RGE on a wide range of scales, up to > 1TeV

μ [GeV]

- Production cross section for high p_T top quark pairs (l+jets & hadronic ttbar decay channels)
- Substructure observables used extensively for t tagging
- lacktriangledown N-subjettiness variables au_3 , au_2 and au_1

$$\tau_N = \frac{1}{\sum_k p_{T,k} R} \sum_k p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \dots \Delta R_{N,k}\}$$

- Hard radiation centers found with exclusive k_t
 algorithm
- Grooming technique applied
 - to remove soft, wide-angle radiation from jet
 - To improve mass resolution

Summary

- Significant ongoing effort to improve our understanding of QCD with jet substructure measurements
- > Jet substructure measurements shed light on SM in extreme phase space regions
- Inclusive and differential cross section measurements performed by CMS
 - > can tackle different modeling aspects at different phase space regions
- ightharpoonup Ranging from low p_T to high p_T various interesting measurements allow us to see the strengths of different MC tunes
- We are not done! Still more measurements and efforts on-going stay tuned!

Thank you for your attention!

BACKUP

What are jets?

- Jets
- -Collimated spray of particles
- -The experimental signatures of quarks and gluons.
- -Invaluable objects to probe QCD
- -Abundantly produced at hadron colliders ("jet laboratories")
- -Important signature for many physics processes (Higgs, top, SUSY, ...)
- -Important for almost all LHC physics analyses!

Jet production in pp collisions directly sensitive to to quark and gluon distributions (PDFs) and $oldsymbol{lpha}_{s}$

Jet reconstruction and jet calibration @ CMS

- A jet in CMS is seen as a bunch of particles in the detector
- Jet reconstruction procedure: input objects (e.g. particles) → apply jet finding algorithm → jet reconstruction
- Anti-k, algorithm (infrared and collinear safe) is used
- Particle Flow (PF) Jets: Clustering of Particle Flow candidates constructed by combining information from all sub-detector systems.
- Factorized Jet Energy Correction approach in CMS:

- × Pileup → corrects for "offset" energy
- \times Response \rightarrow Make jet response flat on η and p_T
- × Data/MC residuals → residual differences between data & MC
- \times Flavor (optional) \rightarrow corrects dependence on jet flavor

