Three flavour order parameters of chiral symmetry in low energy QCD

Marián Kolesár

(in collaboration with Jiří Novotný)

- **A)** Quantum chromodynamics at low energies
- **B)** Overview of chiral perturbation theory
- C) Quark masses
- **D)** Order parameters two and three flavours
- **E)** Results: $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering
- F) Phase structure of QCD with varying number of light quarks

ICHEP 2020, July 31, 2020

Institute of particle and nuclear physics, Charles University, Prague

A) Quantum chromodynamics

Theory of strong interactions

Quarks

- six flavor u,d,s,c,b,t
- three colors

Principle of local gauge invariance of $SU(3)_c
ightarrow$ gluons

Lagrangian: $\mathcal{L}_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} + \bar{q}(i\gamma_\mu D^\mu - \mathcal{M})q$ $G^{\mu\nu} = \partial^\mu G^\nu - \partial^\nu G^\mu + ig[G^\mu, G^\nu], \qquad D^\mu = \partial^\mu + igG^\mu$

At low energies

- gluon self-interactions \rightarrow the coupling constant g grows
- failure of the usual QFT perturbative expansion
- quarks and gluons are not the appropriate degrees of freedom
- quark confinement and hadron spectrum

A) Quantum chromodynamics at low energies

Theory of strong interactions

Quarks

- six flavor u,d,s,c,b,t
- three colors

Principle of local gauge invariance of $SU(3)_c
ightarrow$ gluons

Lagrangian: $\mathcal{L}_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} + \bar{q}(i\gamma_\mu D^\mu - \mathcal{M})q$ $G^{\mu\nu} = \partial^\mu G^\nu - \partial^\nu G^\mu + ig[G^\mu, G^\nu], \qquad D^\mu = \partial^\mu + igG^\mu$

At low energies

- gluon self-interactions \rightarrow the coupling constant g grows
- failure of the usual QFT perturbative expansion
- quarks and gluons are not the appropriate degrees of freedom
- quark confinement and hadron spectrum

The quark flavors in \mathcal{L}_{QCD} differ only in their masses

Isospin symmetry $m_u = m_d$ SU(2) symmetry group

- nucleon doublet (p,n)
- pion triplet (π^+, π^-, π^0)
- kaon quadruplet $(K^+, K^-, K^0, \overline{K}^0)$

Eightfold way $m_u = m_d = m_s$ SU(3) symmetry group

- baryon octet (p,n,Σ,Ξ) and decuplet $(\Delta,\Sigma^*,\Xi^*,\Omega)$
- pseudoscalar meson octet (π ,K, η)
- vector meson octet (ρ , K^* , ω)
- scalar multiplet? $(\sigma,\kappa,a_0,f_0's) \rightarrow \text{large } N_c$ and Zweig rule problems

Chiral symmetry $0 = m_u = m_d (= m_s)$ $SU(N_f)_L \times SU(N_f)_R$

- parity doublets \rightarrow not observed in the spectrum

Strong evidence for chiral symmetry \rightarrow spontaneously broken

The quark flavors in \mathcal{L}_{QCD} differ only in their masses

Isospin symmetry $m_u = m_d$ SU(2) symmetry group

- nucleon doublet (p,n)
- pion triplet (π^+, π^-, π^0)
- kaon quadruplet $(K^+, K^-, K^0, \overline{K}^0)$

Eightfold way $m_u = m_d = m_s$ SU(3) symmetry group

- baryon octet (p,n,Σ,Ξ) and decuplet $(\Delta,\Sigma^*,\Xi^*,\Omega)$
- pseudoscalar meson octet (π ,K, η)
- vector meson octet (ρ , K^* , ω)
- scalar multiplet? $(\sigma,\kappa,a_0,f_0's) \rightarrow \text{large } N_c$ and Zweig rule problems

Chiral symmetry $0 = m_u = m_d (= m_s)$ $SU(N_f)_L \times SU(N_f)_R$

- parity doublets \rightarrow not observed in the spectrum

Strong evidence for chiral symmetry \rightarrow spontaneously broken

The quark flavors in \mathcal{L}_{QCD} differ only in their masses

Isospin symmetry $m_u = m_d$ SU(2) symmetry group

- nucleon doublet (p,n)
- pion triplet (π^+,π^-,π^0)
- kaon quadruplet ($K^+, K^-, K^0, \overline{K}^0$)

Eightfold way $m_u = m_d = m_s$ SU(3) symmetry group

- baryon octet (p,n,Σ,Ξ) and decuplet $(\Delta,\Sigma^*,\Xi^*,\Omega)$
- pseudoscalar meson octet (π ,K, η)
- vector meson octet (ρ , K^* , ω)
- scalar multiplet? $(\sigma,\kappa,a_0,f_0's) \rightarrow \text{large } N_c \text{ and Zweig rule problems}$

Chiral symmetry $0 = m_u = m_d (= m_s)$ $SU(N_f)_L \times SU(N_f)_R$

- parity doublets \rightarrow not observed in the spectrum

Strong evidence for chiral symmetry \rightarrow spontaneously broken

The quark flavors in \mathcal{L}_{QCD} differ only in their masses

Isospin symmetry $m_u = m_d$ SU(2) symmetry group

- nucleon doublet (p,n)
- pion triplet (π^+,π^-,π^0)
- kaon quadruplet $(K^+, K^-, K^0, \overline{K}^0)$

Eightfold way $m_u = m_d = m_s$ SU(3) symmetry group

- baryon octet (p,n,Σ,Ξ) and decuplet $(\Delta,\Sigma^*,\Xi^*,\Omega)$
- pseudoscalar meson octet (π ,K, η)
- vector meson octet (ho, K^* , ω)
- scalar multiplet? $(\sigma,\kappa,a_0,f_0's) \rightarrow \text{large } N_c \text{ and Zweig rule problems}$

Chiral symmetry $0 = m_u = m_d (= m_s)$ $SU(N_f)_L \times SU(N_f)_R$

- parity doublets \rightarrow not observed in the spectrum

Strong evidence for chiral symmetry $| \rightarrow$ spontaneously broken

The quark flavors in \mathcal{L}_{QCD} differ only in their masses

Isospin symmetry $m_u = m_d$ SU(2) symmetry group

- nucleon doublet (p,n)
- pion triplet (π^+, π^-, π^0)
- kaon quadruplet ($K^+, K^-, K^0, \overline{K}^0$)

Eightfold way $m_u = m_d = m_s$ SU(3) symmetry group

- baryon octet (p,n,Σ,Ξ) and decuplet $(\Delta,\Sigma^*,\Xi^*,\Omega)$
- pseudoscalar meson octet (π ,K, η)
- vector meson octet (ho, K^* , ω)
- scalar multiplet? $(\sigma,\kappa,a_0,f_0's) \rightarrow \text{large } N_c \text{ and Zweig rule problems}$

Chiral symmetry $0 = m_u = m_d (= m_s)$ $SU(N_f)_L \times SU(N_f)_R$

- parity doublets \rightarrow not observed in the spectrum

Strong evidence for chiral symmetry \rightarrow spontaneously broken

Effective theory of QCD at the lowest energies

- relevant degrees of freedom: pseudoscalar mesons
- Goldstone bosons of spontaneously broken $SU(N_f)_L \times SU(N_f)_R$
- $\ensuremath{\mathcal{L}}$ as the most general form respecting the approximate symmetry
- organized as expansion in derivatives and quark masses
- SU(2): $\Lambda < M_K = 496 \text{MeV}$, SU(3): $\Lambda < M_\rho = 770 \text{MeV}$

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \text{Exp}\frac{i}{F_0}\pi^a(x)\lambda^a, \quad \mathcal{M} = \begin{pmatrix} m_u & 0 & 0\\ 0 & m_d & 0\\ 0 & 0 & [m_s] \end{pmatrix}$$

Transformational properties: $U_L \in SU(N_f)_L$ $U_R \in SU(N_f)_R$

$$U'(x) = U_R U(x) U_L^+, \quad \mathcal{M}' = U_R \mathcal{M} U_L^+$$

Power counting: $D = 2 + 2L + \sum_{n} V_n(n-2)$ - renormalizable order by order

Effective theory of QCD at the lowest energies

- relevant degrees of freedom: pseudoscalar mesons
- Goldstone bosons of spontaneously broken $SU(N_f)_L \times SU(N_f)_R$
- ${\mathcal L}$ as the most general form respecting the approximate symmetry
- organized as expansion in derivatives and quark masses
- SU(2): $\Lambda < M_K = 496 \text{MeV}$, SU(3): $\Lambda < M_\rho = 770 \text{MeV}$

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \mathsf{Exp}\frac{i}{F_0}\pi^a(x)\lambda^a, \quad \mathcal{M} = \begin{pmatrix} m_u & 0 & 0\\ 0 & m_d & 0\\ 0 & 0 & [m_s] \end{pmatrix}$$

Transformational properties: $U_L \in SU(N_f)_L$ $U_R \in SU(N_f)_R$

$$U'(x) = U_R U(x) U_L^+, \quad \mathcal{M}' = U_R \mathcal{M} U_L^+$$

Power counting: $D = 2 + 2L + \sum_{n} V_n(n-2)$ - renormalizable order by order

Effective theory of QCD at the lowest energies

- relevant degrees of freedom: pseudoscalar mesons
- Goldstone bosons of spontaneously broken $SU(N_f)_L \times SU(N_f)_R$
- ${\mathcal L}$ as the most general form respecting the approximate symmetry
- organized as expansion in derivatives and quark masses
- SU(2): $\Lambda < M_K = 496 \text{MeV}$, SU(3): $\Lambda < M_\rho = 770 \text{MeV}$

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \mathsf{Exp}\frac{i}{F_0}\pi^a(x)\lambda^a, \quad \mathcal{M} = \begin{pmatrix} m_u & 0 & 0\\ 0 & m_d & 0\\ 0 & 0 & [m_s] \end{pmatrix}$$

Transformational properties: $U_L \in SU(N_f)_L$ $U_R \in SU(N_f)_R$

 $U'(x) = U_R U(x) U_L^+, \quad \mathcal{M}' = U_R \mathcal{M} U_L^+$ (Coleman et al. 1969)

Power counting: $D = 2 + 2L + \sum_{n} V_n(n-2)$

- renormalizable order by order

Effective theory of QCD at the lowest energies

- relevant degrees of freedom: pseudoscalar mesons
- Goldstone bosons of spontaneously broken $SU(N_f)_L \times SU(N_f)_R$
- ${\mathcal L}$ as the most general form respecting the approximate symmetry
- organized as expansion in derivatives and quark masses
- SU(2): $\Lambda < M_K = 496 \text{MeV}$, SU(3): $\Lambda < M_\rho = 770 \text{MeV}$

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \mathsf{Exp}\frac{i}{F_0}\pi^a(x)\lambda^a, \quad \mathcal{M} = \begin{pmatrix} m_u & 0 & 0\\ 0 & m_d & 0\\ 0 & 0 & [m_s] \end{pmatrix}$$

Transformational properties: $U_L \in SU(N_f)_L$ $U_R \in SU(N_f)_R$

 $U'(x) = U_R U(x) U_L^+, \quad \mathcal{M}' = U_R \mathcal{M} U_L^+$ (Coleman et al. 1969)

Power counting: $D = 2 + 2L + \sum_{n} V_n(n-2)$ (Weinberg 1979) - renormalizable order by order

B) Chiral perturbation theory $SU(2) \times SU(2)$

Standard power counting: $m_q \sim O(p^2)$ (Gasser,Leutwyler 1984) Effective Lagrangian: $\mathcal{L}_{eff} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots$ $\mathcal{L}^{(2(k+l))} \sim p^{2k}\chi^l, \quad \chi = 2B\mathcal{M}$ $\mathcal{L}^{(2)} = \frac{F^2}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^+ + (U^+\chi + \chi^+U)]$ $\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(l_1 \dots l_7) + \mathcal{L}^{(4)}_{WZ}$ (Gasser,Leutwyler 1984) $\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(c_1 \dots c_{52}) + \mathcal{L}^{(6)}_{WZ}(c_1^W \dots c_{13}^W)$ (Bijnens et al. 1999) (Bijnens et al. 2002)

Free parameters (in addition to m_u , m_d):

 $\mathcal{O}(p^2)$: F, B $\mathcal{O}(p^4)$: $l_1 \dots l_7$ $\mathcal{O}(p^6)$: $c_1 \dots c_{52}$ and $c_1^W \dots c_{13}^W$

Predictive power - information needed to fix the LEC's

B) Chiral perturbation theory $SU(2) \times SU(2)$

Standard power counting: $m_q \sim O(p^2)$ (Gasser,Leutwyler 1984) Effective Lagrangian: $\mathcal{L}_{eff} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots$ $\mathcal{L}^{(2(k+l))} \sim p^{2k}\chi^l, \quad \chi = 2B\mathcal{M}$ $\mathcal{L}^{(2)} = \frac{F^2}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^+ + (U^+\chi + \chi^+U)]$ $\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(l_1 \dots l_7) + \mathcal{L}^{(4)}_{WZ}$ (Gasser,Leutwyler 1984) $\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(c_1 \dots c_{52}) + \mathcal{L}^{(6)}_{WZ}(c_1^W \dots c_{13}^W)$ (Bijnens et al. 1999) (Bijnens et al. 2002)

Free parameters (in addition to m_u, m_d):

 $\mathcal{O}(p^2)$: F, B $\mathcal{O}(p^4)$: $l_1 \dots l_7$ $\mathcal{O}(p^6)$: $c_1 \dots c_{52}$ and $c_1^W \dots c_{13}^W$

Predictive power - information needed to fix the LEC's

B) Chiral perturbation theory $SU(3) \times SU(3)$

Standard power counting: $m_q \sim O(p^2)$ (Gasser,Leutwyler 1985) Effective Lagrangian: $\mathcal{L}_{eff} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots$ $\mathcal{L}^{(2(k+l))} \sim p^{2k}\chi^l, \quad \chi = 2B_0\mathcal{M}$ $\mathcal{L}^{(2)} = \frac{F_0^2}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^+ + (U^+\chi + \chi^+U)]$ $\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_1 \dots L_{10}) + \mathcal{L}_{WZ}^{(4)}$ (Gasser,Leutwyler 1985) $\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_1 \dots C_{90}) + \mathcal{L}_{WZ}^{(6)}(C_1^W \dots C_{23}^W)$ (Bijnens et al. 1999) (Bijnens et al. 2002)

Free parameters (in addition to m_u, m_d, m_s):

 $\mathcal{O}(p^2)$: F_0 , B_0 $\mathcal{O}(p^4)$: $L_1 \dots L_{10}$ $\mathcal{O}(p^6)$: $C_1 \dots C_{90}$ and $C_1^W \dots C_{23}^W$

C) Quark masses

Mass parameters (3 flavour):

- \hat{m} light quark mass average
- $m{r}\,$ strange to light quark mass ratio
- R isospin violation (light quark mass difference)

$$\widehat{m} = \frac{m_u + m_d}{2}, \quad r = \frac{m_s}{\widehat{m}}, \quad R = \frac{(m_s - \widehat{m})}{(m_d - m_u)}$$

lattice		\hat{m}	r	R
FLAG'19 $N_f = 2 + 1$	average	3.364±0.041	27.42±0.12	38.1±1.5
FLAG'19 $N_f = 2 + 1 + 1$	average	3.410±0.043	27.23±0.10	40.7±2.7
phenomenology				
Kampf et al.'12	$\eta ightarrow 3\pi$			37.8±3.3
Colangelo et al.'17	$\eta ightarrow 3\pi$			34.2±2.2

FLAG - Flavour Lattice Averaging Group

D) Leading order: $SU(2) \times SU(2)$

Convenient normalization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(2) = \frac{F^2}{F_{\pi}^2}, \quad X(2) = \frac{2\,\hat{m}\Sigma}{F_{\pi}^2 M_{\pi}^2} = \frac{2\,\hat{m}BF^2}{F_{\pi}^2 M_{\pi}^2}$$

Two flavour values:

phenomenology		Z(2)	X(2)
Descotes et al.'01	$\pi\pi$ scattering	0.89±0.03	0.81±0.07
lattice			
Bernard et al.'12	RBC/UKQCD	$0.86 {\pm} 0.01$	$0.89{\pm}0.01$
FLAG'19 $N_f = 2 + 1$	average	$0.89{\pm}0.01$	$0.84{\pm}0.05$
FLAG'19 $N_f = 2 + 1 + 1$	average	0.862±0.005	0.98±0.24

FLAG - Flavour Lattice Averaging Group

D) Leading order: $SU(3) \times SU(3)$

Convenient normalization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(3) = \frac{F_0^2}{F_\pi^2}, \quad X(3) = \frac{2\,\widehat{m}\Sigma_0}{F_\pi^2 M_\pi^2} = \frac{2\,\widehat{m}B_0 F_0^2}{F_\pi^2 M_\pi^2}$$

Three flavour values:

phenomenology		Z(3)	X(3)
Bijnens, Ecker'14	NNLO χ PT (main fit)	0.59	0.63
Bijnens, Ecker'14	NNLO χ PT (free fit)	0.48	0.45
Amoros et al.'01	NNLO χ PT ("fit 10")	0.89	0.66
lattice			
Bernard et al.'12	RBC/UKQCD+Re χ PT	$0.54{\pm}0.06$	$0.38 {\pm} 0.05$
Ecker et al.'13	RBC/UKQCD+large N_c	$0.91{\pm}0.08$	
FLAG'19 $N_f = 2+1$	MILC 09A	0.72±0.06	$0.61 {\pm} 0.06$

E) Bayesian statistical analysis: $\eta \rightarrow 3\pi$

$\eta \to 3\pi$ observables calculated in resummed CHPT

(M.K., J.Novotný 2018)

Decay widths (PDG): $\Gamma_{+} = 300 \pm 12 \text{ eV}, \ \Gamma_{0} = 428 \pm 17 \text{ eV}$

Dalitz plot parameters (KLOE): $a = -1.095 \pm 0.004$

Higher Dalitz slopes not predicted reliably from theory (M.K., J.Novotný 2017)

Bayes' theorem
$$P(X_i | data) = \frac{P(data | X_i) P(X_i)}{\int dX_i P(data | X_i) P(X_i)}$$

 $P(X_i|\text{data})$ - probability density of X_i being true given data $P(\text{data}|X_i)$ - experimental distributions of independent observables O_k $P(X_i)$ - probability distribution of X_i (prior)

num.integration \rightarrow Monte Carlo sampling $\sim 10^7$ total samples \equiv ensemble of theoretical predictions

E) Bayesian statistical analysis: $\eta \rightarrow 3\pi$

 $\eta \to 3\pi$ observables calculated in resummed CHPT

(M.K., J. Novotný 2018)

Decay widths (PDG): $\Gamma_{+} = 300 \pm 12 \text{ eV}, \ \Gamma_{0} = 428 \pm 17 \text{ eV}$

Dalitz plot parameters (KLOE): $a = -1.095 \pm 0.004$

Higher Dalitz slopes not predicted reliably from theory (M.K., J. Novotný 2017)

Bayes' theorem
$$P(X_i | data) = \frac{P(data | X_i) P(X_i)}{\int dX_i P(data | X_i) P(X_i)}$$

 $P(X_i|\text{data})$ - probability density of X_i being true given data $P(\text{data}|X_i)$ - experimental distributions of independent observables O_k $P(X_i)$ - probability distribution of X_i (prior)

num.integration \rightarrow Monte Carlo sampling

 $\sim~10^7$ total samples \equiv ensemble of theoretical predictions

E) Leading order: $SU(3) \times SU(3)$

Extraction from $\eta \rightarrow 3\pi$ data:

(M.K., J. Novotný 2018)

E) Bayesian statistical analysis: $\pi\pi$ scattering

$\pi\pi$ subthreshold parameters calculated in resummed CHPT

(Stern et al. 2003; M.K., J. Novotný 2018)

$$A_{\pi\pi}(s,t,u) = \frac{\alpha_{\pi\pi}}{F_{\pi}^2} \frac{M_{\pi}^2}{3} + \frac{\beta_{\pi\pi}}{F_{\pi}^2} \left(s - \frac{4M_{\pi}^2}{3}\right) + \dots$$

 $\alpha_{\pi\pi} = 1.381 \pm 0.242, \quad \beta_{\pi\pi} = 1.081 \pm 0.023$

BNL-E865: (Stern et al. 2001)

More precise data available (NA48/2)

E) Bayesian statistical analysis: $\pi\pi$ scattering

$\pi\pi$ subthreshold parameters calculated in resummed CHPT

(Stern et al. 2003; M.K., J. Novotný 2018)

$$A_{\pi\pi}(s,t,u) = \frac{\alpha_{\pi\pi}}{F_{\pi}^2} \frac{M_{\pi}^2}{3} + \frac{\beta_{\pi\pi}}{F_{\pi}^2} \left(s - \frac{4M_{\pi}^2}{3}\right) + \dots$$

 $\alpha_{\pi\pi} = 1.381 \pm 0.242, \quad \beta_{\pi\pi} = 1.081 \pm 0.023$

(Stern et al. 2001)

BNL-E865:

More precise data available (NA48/2)

 $N_f < N_f^c$ $N_f = N_f^c$ $N_f^c < N_f^c < N_f^A$ $N_f \ge N_f^A = 11/2N_c$ asymptotic freedom lost

quark confinement, SB χ S, hadron spectrum chiral phase transition (Appelquist et al. 1998) conformal window

Interpretation - counter-play:

- condensating effect of gluon self-interactions

- screening of light-quark-loop vacuum fluctuations

"Paramagnetic" inequality: dependence on N_f

 $F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of s-quark vacuum fluctuations

- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

 $\begin{array}{ll} N_f < N_f^c & \mbox{quark confinement, SB} \chi \\ N_f = N_f^c & \mbox{chiral phase transition} \\ N_f^c < N_f < N_f^A & \mbox{conformal window} \\ N_f \ge N_f^A = 11/2N_c & \mbox{asymptotic freedom lost} \end{array}$

quark confinement, SB χ S, hadron spectrum chiral phase transition conformal window asymptotic freedom lost

Interpretation - counter-play:

- condensating effect of gluon self-interactions

- screening of light-quark-loop vacuum fluctuations

"Paramagnetic" inequality: dependence on N_f

$$F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of s-quark vacuum fluctuations

- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

 $\begin{array}{ll} N_f < N_f^c & \mbox{quark confinement, SB} \chi \\ N_f = N_f^c & \mbox{chiral phase transition} \\ N_f^c < N_f < N_f^A & \mbox{conformal window} \\ N_f \ge N_f^A = 11/2N_c & \mbox{asymptotic freedom lost} \end{array}$

quark confinement, SB χ S, hadron spectrum chiral phase transition conformal window asymptotic freedom lost

Interpretation - counter-play:

- condensating effect of gluon self-interactions

- screening of light-quark-loop vacuum fluctuations

"**Paramagnetic**" inequality: dependence on N_f

 $F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of *s*-quark vacuum fluctuations

- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

13/13 Marián Kolesár: Three flavour order parameters of chiral symmetry in low energy QCD

(Stern et al.2000)

 $\begin{array}{ll} N_f < N_f^c & \mbox{quark confinement, SB} \chi \\ N_f = N_f^c & \mbox{chiral phase transition} \\ N_f^c < N_f < N_f^A & \mbox{conformal window} \\ N_f \ge N_f^A = 11/2N_c & \mbox{asymptotic freedom lost} \end{array}$

quark confinement, SB χ S, hadron spectrum chiral phase transition conformal window asymptotic freedom lost

Interpretation - counter-play:

- condensating effect of gluon self-interactions
- screening of light-quark-loop vacuum fluctuations

"**Paramagnetic**" inequality: dependence on N_f

(Stern et al.2000)

$$F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of s-quark vacuum fluctuations

- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

 $N_f < N_f^c$ $N_f = N_f^c$ $N_f^c < N_f^c < N_f^A$ conformal window $N_f \ge N_f^A = 11/2N_c$ asymptotic freedom lost

quark confinement, SB χ S, hadron spectrum chiral phase transition (Appelquist et al. 1998)

Interpretation - counter-play:

- condensating effect of gluon self-interactions

- screening of light-quark-loop vacuum fluctuations

"Paramagnetic" inequality: dependence on N_f

 $F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of s-quark vacuum fluctuations
- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

Marián Kolesár: Three flavour order parameters of chiral symmetry in low energy QCD 13/13

(Stern et al.2000)

 $N_f < N_f^c$ $N_f = N_f^c$ $N_f^c < N_f^A$ conformal window $N_f \ge N_f^A = 11/2N_c$ asymptotic freedom lost

quark confinement, SB χ S, hadron spectrum chiral phase transition (Appelquist et al. 1998)

Interpretation - counter-play:

- condensating effect of gluon self-interactions

- screening of light-quark-loop vacuum fluctuations

"**Paramagnetic**" inequality: dependence on N_f

 $F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$

 $F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_A^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

- effect of s-quark vacuum fluctuations

- L_4 , L_6 $1/N_c$ suppressed LECs, connected to the scalar sector
- possible $1/N_c$ and Zweig rule violation?

 \rightarrow difference between SU(2) and SU(3) theory?

13/13Marián Kolesár: Three flavour order parameters of chiral symmetry in low energy QCD

(Stern et al.2000)

Thank you for your attention!