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Hyper-K builds on huge success of Super-K

Next generation neutrino experiment with
two new water Cherenkov (WC) detectors

e 258 kt far detector @ 295 km

e 0.5 ktintermediate detector @ ~ 1 km

Broad & ambitious physics programme
through comprehensive upgrades
e 38 xincrease in fiducial mass
e Improved photo-detector technology
e Reduced systematics with new near &
intermediate detector measurements

Improved analysis techniques required to
realise Hyper-K’s precision measurements

See physics sensitivities talks:
M. Scott, Wed 29 July, 18:45
T. Yano, Thu 30 July, 10:30 2




Hyper-K’s WC detectors

Hyper-K far detector
3rd generation of WC detectors at Kamioka

72 m tall x 68 m diameter = 258 kt total mass VAY_ -
188 kt fiducial mass SN 0]
Baseline design: 40,000 B&L 50 cm PMTs
= 40% photo-coverage

e e e e
e

Hyper-Kamiokande
. ': %&‘ ‘,‘. N o g T,
ot 3]

s \\Ao A
"9 Kamiokande Wh i
I‘-’.~‘-- et B Y

New photo-detector technology could
provide increased sensitivity
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See photo-detector talk: PR : B ¢ :
T. Tashiro, Fri July 31, 10:45 ] | e
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Hyper-K’s WC detectors

Multi-PMT modules

Intermediate detector (IWCD)

See HK near detectors talk:
M. Hartz, Wed July 29, 19:00 Located ~ 1 km from beam source

8 m tall x 10 m diameter tank
~ 500 multi-PMT modules

Measure flux + cross-section to
reduce systematics at far detector

See multi-PMT talk:
G. De Rosa, Fri July 31, 11:00

Measurements with high event rate,
same technology and target
nuclei as far detector

Necessary for small tank

8 cm PMTs: Better position resolution
< 1 ns timing resolution
Additional directionality information

Moves vertically in ~50 m tall pit
measuring different off-axis
angles gives different v energy
spectra

Expect improvements in e.g. particle ID

Also under investigation: New detector designs need improved
Combining 50 cm PMTs + multi-PMT modules in far detector simulation and reconstruction
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Simulation & reconstruction overview

Detector design

Event to
simulate

Low-energy
reconstruction:

A

Data

Y

Detector
simulation:
WCSim

BONSAI / LEAF

High-energy

reconstruction:
fiTQun

A

N. Prouse

Trigger & DAQ

~ Machine-learning =
~=  reconstruction:
' WatChMalL '
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Simulation & reconstruction overview

Detector design

Event to
simulate

Low-energy

Data
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Detector
simulation:
WCSim

l

reconstruction:
BONSAI / LEAF

A

High-energy

Trigger & DAQ

New trigger & DAQ framework to use same
code for real and simulated data

ToolDAQ: https://github.com/ToolDAQ
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reconstruction:
fiTQun

A

- Machine-learning

= reconstruction: i

WatChMalL
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https://github.com/ToolDAQ

Simulation software

WCSim: Geant4-based WC detector simulation package

e Flexible simulation of water tank, PMTs and electronics

e Inputs:

o Choice of detector geometry
m Consistent simulation framework across detectors (HK & IWCD)
m Well suited to detector optimisation studies

o PMT & electronics specifications
o Particles to simulate
m Single particles / neutrino interaction products / background sources
e OQOutput:
o Digitized PMT hit times and charges
m To feed in to reconstruction software

o True particle track and PMT hit information
m For debugging, investigating analysis, tuning reconstruction software

https://github.com/WCSim
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https://github.com/WCSim

Simulation software

S. Zsoldos, Fri July 31, 11:45

HK far detector (baseline design) simulation Inner detector Outer detector
(PMTs facing inwards) (PMTs facing outwards)

Simulated muon in outer detector

Simulated 1 GeV muon event in inner detector
WCSim can easily simulate different detector setups

N. Prouse ICHEP, 29 July 2020



Sim u |atI0n SOftwa re IWCD simulation (10 m tall inner detector)

IWCD simulation (6 m tall inner detector)

reflector

photocathode

Full multi-PMT
module geometry

pressure vessel o

-—

WCSim can easily simulate different detector setups

N. Prouse ICHEP, 29 July 2020



Low-energy reconstruction software

BONSAI: Reconstruction for events with few MeV to 10s of MeV
e Position (vertex) reconstruction minimises goodness based on hit

timing: 9(@))= éwz exp ((—0.5(— ’—Cwat)/@

Goodness to PMT hit PMT Candidate Timing
maximise times locations vertex resolution

e Direction reconstruction uses circular KS test of hit pattern around

the Cherenkov cone
e Energy reconstruction scales on number of hits observed around

expected timing at each PMT

LEAF: More modern, flexible framework using same BONSAI algorithms

e New minimizer for vertex fitter
e Simpler to tune to different detector geometries

N. Prouse ICHEP, 29 July 2020 10



Low-energy reconstruction software

Vertex resolution (cm

N. Prouse

Testing different coverage and dark rate setups Testing combinations of 50 cm PMTs and mPMTs
300 E
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Different detector designs can be tested to optimise for physics sensitivities
Good resolutions as low as 3 - 5 MeV

At low energies, total effective photo-coverage is most important factor
o Low PMT dark rate also important to increase signal-to-noise ratio

ICHEP, 29 July 2020
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High-energy reconstruction software

fiTQun: Advanced likelihood-based reconstruction for higher energies

e Originally developed for Super-K detector
o Based on algorithm of MiniBooNE: https://arxiv.org/abs/0902.2222

e Uses full information of unhit PMTs + time & charge of hit PMTs:
unhit hat
(X) =11 7 (W;hitIX)}H[Pz (;w'tIX)][fq (%iIX)][ft (tQX)]
j i

Likelihood to Probability of Probability of Hit charge Hit time probability
maximise no hit at PMT hitat PMT  probability density density

e Probabilities calculated based on direct + scattered + reflected light

e Likelihood ratios used to distinguish particle types and single-ring /
multi-ring event topology hypotheses

N. Prouse ICHEP, 29 July 2020 12
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High-energy reconstruction software

e 7: significant background for v, signal
o Decays to two gammas

m Produces EM showers ~ A T T -

o When opening angle is small, N s T
looks like single electron ring g oof| © @l R B G

e fiTQun maximises likelihoods 50F| [ Backerowna | - - R
o Single-ring electron ol s BE

o 2-ring 7’ R =

e Reconstruct mass for z° hypothesis oE R
e 2D cut to reject background - LRI
. . . SOl 00000000000 O O™e0o o o o o o s a = -]

o Likelihood ratio EEEC 000000 oallle Bg, - - - - - o

o Reconstructed z° mass % 0 100 150 200 250

7 Mass (MeV/c?)
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High-energy reconstruction software

fiTQun performance comparing different IWCD setups % ;‘Z [ ——
15) 1 é 305_ ~ ——=— 10x8m 8inch PMT 40%
?9: 08_ g 25% \ et 10x8m mPMT 28%
s $ o
g o6 = 15
E 0.4 . 10
F== e 2oines AT St ] Electron vertex resolution....
0.oF ——— 10x8m 8inch PMT 40% OE' N N T B
e mPAT 285 0 200 400 600 M 800t [M1(\)/90]
—<—— 10x8mm % omentum ev/c
% 200 400 600 800 1000 g HE
Momentum [MeV/c] % 35k 7 10x6m 20inch PMT 40%
Good reconstruction resolutions & PID, down 3 3 IR
to ~ 50 MeV above energy threshold . 25
" . . T 20F
Improved timing & spatial resolution of mPMTs = =\ .~
being utilised :
o Better performance even with lower E Muon vertex resolution
E \uIV.‘.Ix.\.I.lJ.I.\[..I
photo-coverage % 200 400 600 800 1000 1200

Momentum [MeV/c]
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Machine learning reconstruction

Limit of traditional reconstruction methods is being reached
e Computation time is becoming a limiting factor

o Larger detector with more PMTs
o Improving resolutions requires more complex algorithms

Machine learning algorithms have potential to push further

N. Prouse

Potential to use all available information without detector model

assumptions / approximations
Very fast to run once neural networks have been trained

Now becoming common throughout HEP applications
But many new challenges...

ICHEP, 29 July 2020
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Machine learning reconstruction
WatChMal.: cross-collaboration group formed to explore ML for WC

Common challenges for ML with WC detectors
e Cylindrical geometry
e High-resolution, sparse data

Many physics goals

e Maximise precision of new detectors

e Reconstruct complex event topologies

e Discriminate electron and gamma rings

e Improving detector calibration & systematics

E g
o)

~yWatChMal.org
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Machine learning reconstruction
Initial studies of particle type classification in IWCD with ResNet CNN

ResNet-18 CNN architecture
e Cylinder unwrapped onto
40x40 pixel image
o 1 mPMT per pixel
o 38 channels: time, charge

.
)

U - Rejection
—

*
-¢-

FiTQun TV S VA Ve Vo N e
ResNet //' <
< Muon rejection factor with
80% electron efficiency

—

‘‘‘‘‘‘‘

work in progress

-

of the 19 PMTs per mPMT L.~

200 400 600 800
Energy above Cherenkov Threshold (MeV)

1000

e 3M of each of muons,

electrons, gammas
o Uniform positions

throughout tank
o Isotropic directions
o Energiesfrom0Oto 1 GeV =

-8l __3-
3.5 33

Electron efficiency with
80% gamma rejection

work in progress

e & 2.8
g wE g2

above Cherenkov threshold

N. Prouse

200 400 600 800
Energy above Cherenkov Threshold (MeV)

ICHEP, 29 July 2020

1000

Significant
improvement seen in
muon vs electron
discrimination

Neutral current gamma
production is significant
systematic uncertainty in
oscillation analysis

While no electron/gamma
separation with fiTQun
has been successfully
used, ML looks promising

17



Machine learning reconstruction-
Many other possibilities under investigation

e Reconstruction of physical quantities

e PointNet (point cloud NN) & Graph
NNs for flexibility of detector
geometries

e New methods for mapping cylinder to
CNN images

e Generative networks to calculate
fiTQun likelihoods

e Generative networks for improving
simulation and detector systematics

N. Prouse
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work in
progress

energy
reconstruction

-0.2 0.0 0.2

-0.4 .
Relative energy uncertainty (pred-true)/true

position reconstruction
work in progress
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Summary

Simulation and reconstruction framework has been developed for
Hyper-Kamiokande’'s Water Cherenkov detectors

e C(Consistent simulation & reconstruction across detectors

e Simulation and reconstruction can adapt to different detector setups
e Enables detector design optimisation studies

Reconstruction packages give good reconstruction & PID performance
e Exploit improved photosensors of Hyper-K
e Smaller intermediate detector can use precision of mMPMTs

Machine learning can provide improved resolutions and new capabilities
e Electron vs muon PID suggests improvement from fiTQun

e Electron vs gamma statistical separation is possible

e \Work underway on many new initiatives

N. Prouse ICHEP, 29 July 2020



Appendix
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IWCD Sp

N. Prouse

Arb. Norm

Arb. Norm.

Arb. Norm.

anning off-axis angle
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WCSIm physics processing

« Kinematics of particles emitted by neutrino
Interaction or entering the detector are the input
to WCSim.

« Physics processes of particles after the neutrino
interaction are simulated by Geant4.

« Particle track in water, interaction with nuclel,
and Cherenkov radiation

« Geant4 also tracks Cherenkov photons.

« Many parameters describing material properties
are taken from Super-K calibration and
simulation

« Water, black sheet, glass

N. Prouse ICHEP, 29 July 2020



PMT description in WCSIim

When a photon reaches PMT surface, output
signal is simulated according to PMT properties.

« PMTs are described by some functions and
parameters

« Overall efficiency for a photon to register a
charge, including the quantum efficiency and
collection efficiency

« Single photo-electron distribution
« Timing response function
« Dark noise rate
« Users can modify PMT properties easily

N. Prouse ICHEP, 29 July 2020



Electronics in WCSim

« As dark noise, add random 1 photo-electron hit
to each PMT at a given rate

« Convert hits by real photon and dark noise, and
then digitize the hits

« PMT-by-PMT threshold is applied
« Timing and charge smearing can be applied

« Issue triggers by using number of digitized hits
In a given sliding timing window

ICHEP, 29 July 2020



WCSim: mPMT implementation

« Acrylic vessel
« Optical gel

o« Aluminum
reflector

« 3inch PMT

 Inner support
structure

OD simulation is
under construction

N. Prouse

Acrylic/Glass vessel (t = 10m

N

Blacksheet

ICHEP, 29 July 2020

m)Innersupport"vessel" Reflector logicWCPMT
(blacksheet)

SolidBarrelCell

Expose
r glass to acrylic

thickness



WCSim: Implemented mPMT properties

New
measurements
of PMT
properties are
underway

N. Prouse

8inch PMT properties
based on old LBNE
measurements

QE is taken from KM3NeT

measurement
doi: 10.1063/1.4902786
Photon detection efficiency

0‘253 — 8inch PMT

QE * CE

/ — 3inch PMT

0.2F /
0.15F

NE VRN

nay \.
e,

\\\

300 350 400 450 500 550 600 650 700
Wavelength [nm]
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C. Vilela, SBU

fiTQun direct light charge prediction

7| =[® (p)| [ dslg (p, s, cos8) Q(R) T (R) € (n)

The direct light charge
prediction u is
evaluated at each of
the hit photosensors

The overall amount of
light is governed by the
function ®, which
depends on particle
type and momentum

The factors g, Q, T and
€ are evaluated in an
integral which is
computed over the
length of the track s

N. Prouse ICHEP, 29 July 2020



C. Vilela, SBU

fiTQun direct light charge prediction

u" =@ (p) / dslg (p,5,cos0)] A (R) T (R) « ()

The function g encodes the Cherenkov emission profile

Angular profile (weighted direction) Angular profile (weighted direction)
Al

w T AL P |

s [cm]

8 8 8 8 8 3 8 8
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-
=

oy

=]

00 01 02 03 04 05 06 07 08 09
cost

00 01 02 03 04 05 06 07 08 09 1
costi

Muon (left) and electron (right) emission profiles at 300 MeV/c

» Cone collapse differs for particles of different mass
* This is all the information used for individual ring PID
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C. Vilela, SBU

fiTQun direct light charge prediction
=0 (p) [ ds g (p.s,cost) R R)T ®)e )

I[L p—
Q reflects the change in apparent scale of T gives the amount of
the photosensor as a function of distance light attenuation in water
as a function of distance

€ represents the angular response of the
photsensor accounting for effects such as |
the shadowing due to adjacent PMTs and 2w}

the shape of the photocathode

2500~

1500

I(s) 1000[—

0.0012 -

300

0.00118f — Full =

ok Lol
0 0.1 02

== Parabolic

A e R
0.8 09 1
cosn

The integral is not computed explicitly at run time
» A parabolic approximation is used:

J(s) = Q(R) T(R) e(n) = jo + j15 + jos°

P e | e, i PP
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* The integral over the Cherenkov emission

profile is tabulated



C. Vilela, SBU

fiTQun indirect light charge prediction

e Currently assume a cylindrical geometry

dp
dludirect,z'so

indirect

e Tabulate (= Ascat)
e Source direction (0s, ¢s)
e Source position (Otsy Rsy Zs)
e Z; for PMTs on the sides

® Asige(0sy ¢sy Orsy Rsy Zs, Zt)
* R for PMTs on the ends

® Aena (95, (I)s, ®ts, Rs, Zs, Rt)

N. Prouse ICHEP, 29 July 2020



C. Vilela, SBU

fiTQun PMT response

Charge Time
 PDFs of the observed charge for a * Time-of-flight corrected time
given true mean obtained from distributions are obtained from
Monte Carlo simulation Monte Carlo simulation
* Hit probability functions are . Stored as a function of particle G M
extracted from these distributions type, particle momentum, and
Charge PDF f(qlu) predicted charge at the PMT
& * R
T [ ¢
] p=300MeVic
£1 p= 105 pe
o ) ‘ to~ D
‘4 T — " -
™ )
Rn s
10" 4 S “‘“13 teorr = to — <thit - - _)
» b » Predicted1<g1arge u(p.g.? = 2¢
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fiTQuNn multi-ring fitter

« Start from single-ring fits and sequentially
add e-like or 1t-like ring until no
Improvement is seen.

* Once best-fit hypothesis is found, improve
by fitting additional particle hypotheses
(e.q., U-like)

C. Vilela, SBU

mprovement

Cee) (=) C"e) Cr

== cneexnen)
Gy ) (=ICm) o (o) %5
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nnnn

Number of rings
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Old reconstruchon
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fiTQun momentum resolution

Electron fiTQun resolutions for IWCD Muon

'E' 14__ .................................................... 10x6m 20inch PMT 40% ‘; 14__ .................................................... 10x6m 20inch PMT 40%
o E o E
:0_3 12 [ ssmissssssarasssciasi oo . 10x8m 8inch PMT 40% 5 12 [ st st . 10x8m 8inch PMT 40%
(o} - (o) -
g 1 0 i ——e—— 10x8m mMPMT 28% § 1 0 L ——e— 10x8m mMPMT 28%
c £
E 8 E 8 e
(0] (O] r
E 6 S
= = C

4

2r

0:|||I|||I|||I|||I|||I O:u..I...I...I.;.I...I;..I

0 200 400 600 800 1000 0 200 400 600 800 1000 1200

Momentum [MeV/c] Momentum [MeV/c]

 (Good resolution down to ~50 MeV above threshold

* Improved timing & spatial resolution of mMPMTs being utilised
« Better resolutions even with lower photo-coverage

N. Prouse ICHEP, 29 July 2020
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ML Physics goals & TRIUMF

Super-K atmospheric
neutrinos

©
o

Complex event topologies: multi-GeV events
Reconstructed Predicted Charge
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e” / y discrimination & improved n® identification
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High uncertainty on NCy background
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Machine learning dataset

* For most studies in this talk:
e ¢e/p/y events (3M events each)
e |[WCD with mPMTs

e flat distribution in
E—Echerenkov-thr. = 0 ~ 1000 MeV

* uniformly distributed in full tank
(no veto for partially-contained tracks)

e 47 direction

* For each PMT charge and time
(though sometimes only charge is used)

 Individual PMTs belonging to the same mPMT module
are all placed at the same pixel. Since each mPMT
has 19 small PMTs, there are 19 input layers like the
one shown.

e |O is sped up by only loading hit information from

disk, and populating tensor at runtime
N. Prouse ICHEP, 29 July 2020




CNN architecture

N. Prouse

34-layer residual

e From earlier studies ResNet”*

seems to work well.
* K. He et al., arXiv:1512.03385

* In general deeper is better,
but for practical purposes
using 18 layers.

e [ater will also discuss other
networks like PointNet.

Results from earlier studies with easier dataset:
(side-going events from vertex fixed to center of tank, barrel only)

Model Y Rejection at 50% AUC
e signal efficiency

LeNet-9 CNN 85.5(7.01) 0.780

ResNet-50 CNN 90.4 (10.55) 0.836

ResNet-101 CNN 90.3 (10.46) 0.836

ResNet-152 CNN 90.7 (11.04) 0.841

DenseNet-121 CNN  89.7 (9.75) 0.823

3x3 conv, 256, /2

3 conv, 256

3
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Topological map to square

Cut open along solid line and map to square,
with W(p, z) chosen to preserve area:

7T—'¢ p2+2Rz+RH
X, = W(p, W(p,z) = V—
+ (p,2) 2 (0,2) R2+RH

Solve differential eq. for
constant Jacobian
o(X+,X-)
9(p, 9)

dX,.dX_ =

)dpd¢

10

15

2 20
The PMTs are then put on a square grid which can be fed to

machine learning libraries. Prior to convolution, pad sides according
to identification given by arrows to embody topology of 2-sphere.

25
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Topological map to square

Work in progress

103
—— Topological map
Open can
c
k=l
-t
@ 102
[
| v
e]
=
-
o
—
o
S 10!
9 10
Q
3
note: both configurations trained with less events (0.9M) for
less epochs, hence worse results that those shown first.
100 T T T T
0.75 0.80 0.85 0.90 0.95 1.00

e signal efficiency

Interestingly, the original rep (open can)
seems to work better
but difference is small
— maybe because of explicit
$-symmetry for barrel?
PID is mostly due to local features?

note: Using separate networks for top/
bottom/barrel gives much worse results
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Representation
of mMmPMTs é FEIeCten S

19 layers

* Single layer
Give each 3" PMT a pixel,
and put on a single layer

10?

PUt WhOIe m P MT mOd UIe note: both configurations trained with less events (O.QM) for
OntO a plxel , and put eaCh - less epochs, hence worse results that those shown first.

075 0.80 085 0.90 095 100

3" PMT on its own layer e efficiency
(19 3" PMT / mPMT
— 19 layers for each ch)

19 layers slightly better?

Reasonable since with single layer
network doesn’t know which pixel is
looking in which direction. However close
to order of random fluctuations.

Also PMT light yield can vary by position
in module, maybe network can pick this
0 20 4 6 8 10 120 T— a: . c up better-
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PointNet for e/p/y

Classification Network

mlp

k

(

- input mlp (64,64) feature mip (64,128,1024) -

% transform transform pool 1024 (512,256,k)

) ) 3 .

B — % e hared 2 L \E izl nx1024 [—

2 T 2 global feature

= 1 —1 Pl 4

(1) (3) @ ()
P I
matrix : : matrix

multiply | : multiply

e Each PMT hit represented as a point
(charge+time+pos)

¢ Network learns linear transformation to rotate input
and feature vectors, then applies symmetric pooling

operation

¢ We notice mean pooling gives better results than

max pooling in original paper

— consistent with experience from traditional
reconstruction that all PMT hit info contribute

ICHEP, 29 July 2020

6)

. output scores

C.R.Qietal, CVPR 2017

3.0

‘ ‘ Using maxpool
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Background Rejection
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Exploring PointNet (point cloud neural network) for greater flexibility

with detector geometries

e/gamma vs mu

—— ResNet, AUC 0.995
PointNet, AUC 0.994

i

——

Similar performance at
muon / electron
classification

work in-progress

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency

PointNet uses less ‘local’ features

Background Rejection
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e vs gamma

—— ResNet, AUC 0.652
PointNet, AUC 0.589

| ResNet working better at
electron / gamma

separation
\
=
work in progress ———
0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency

« May work better at low-E (hits distributed more sparsely)
« May work better at regression tasks (position, energy, direction)

ICHEP, 29 July 2020




N. Prouse

Position/energy
reconstruction

e Same network as for PID classification,

but interpret network output as:

1. Epreq

2. log GP%
pred. energy resolution

xpred
Y pred

Zpred

o o &~ O

2
log Ohos
pred. position resolution

* To give the network geometry

information, PMT positions and directions

are passed in as additional input layers
ICHEP, 29 July 2020

Loss defined as

L= LE + L]I)OS
(Epred - Etrue)2 1
Ly = + —log 62
i 207 7 SCE
(Xpred - Xtrue)2 3
L= +=logo2,
pos 20}%05 5 & Opos

introducing log o2 has couple of benefits:

1. adjust relative scaling of Ly and L
similar technique used in A. Kendall et al., CVPR 2018
2. remove bias due to events that are

inherently impossible to reconstruct

e.g. energy for uncontained events

can select well reconstructed events



Machine learning reconstruction

Position and energy reconstruction using ResNet

Position resolution

80 0.5
— 99.7% — 99.7% /
70 - 95.5% Near-wall and 95.5% Mostly tracks /
i low-E events ~ § 0417 983% ayiting small /
5 IWCD tank /
3 /
®o3 /
> /
o /'/
o /
@ 0.2 %
(]
2
©
& 01
10 .
i work in progress work in progress
0.0 0.2 0.4 0.6 0.8 1.0 %0 0.2 0.4 0.6 0.8 1.0
Efficiency Efficiency

» First tests are learning physical quantities successfully
» Further work underway for consistent comparisons to fiTQun
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Reconstruction with Generative CNN

We are exploring an alternative approach to the more traditional “end-to-end” CNN
event classification for reconstruction of water Cherenkov events.

Label/ ) 4 Label / )
Input o Input i g
Prediction Prediction
| [ 1,CCOm ] [PID] PR
v, CCO Dz ( ///‘ NN Outpu
v,CCOther Py Xz {
~ wm) , CCOther . (T K
NC ” XN A
unl S N oz N i | 2z | N
e ~"Classifier ) S Generator

S

A CNN is trained to predict the hit charges and times for a given set of frack parameters.
This Cherenkov ring generator can be incorporated into a maximum-likelihood
estimation framework to form an event reconstruction algorithm.

*  This method is analogous to FiTQun reconstruction: the CNN replaces the parameterized charge
and time pdf prediction.

While | don’t necessarily expect this method to outperform the end-to-end CNN
classifier’s accuracy, it has potential advantages in the context of physics analyses.

N. Prouse ICHEP, 29 July 2020



Why this might be interesting

Single-ring predictions can be combined to predict arbitrary event hypotheses.
* E.g.in FiTQun mean predicted charges at each PMT are added up and time pdfs are
combined, weighted by charge.
Neural network can be trained on single-particle MC:
* A priori not relying on problematic neutrino and secondary interaction models.

*  Avoid multi-particle final states combinatorics.

“Interesting” event topologies do not need to be defined at training stage.
* Analyzers have flexibility to produce very specific event hypotheses out of single-ring
predictions without having to retrain the neural network.
* E.g. proton decay to kaon and neutrino analysis with FiTQun specifies event with
single de-excitation gamma followed (12 ns) by mono-energetic muon.
This reconstruction approach would be a drop-in replacement for FiTQun.
* Could be used with current analysis and systematic uncertainty estimation techniques, for
example in the T2K and Super-Kamiokande experiments.
* Could be a useful first step in the move towards end-to-end ML reconstruction.

N. Prouse ICHEP, 29 July 2020



Generating pdfs

Input FC1
PIDI => |

A
RelLU activation everywhere
ConvTranspose2d ConvTranspose2d Convlranspose2d
& +
+ Conv2d
Pogmonl ‘ | Conv2d _ Conv2d
3 11 =) 22 mm) 44 wm) 88
21
64 on 42
Direction | == R
a
512 1024 1024 g
V.
168
Energy | == =) 3
1 Based on arXiv:1411.5928 > - ~
2048
512 In ( ) ln(a ) Bt

Loss= —In(L) = — X it I (Punhit) — Yopig (1 — Punhit) — Lpiy 5 |In(270%) + —(q"*‘;;”)-

« Outputis a (Gaussian) charge pdf and hit probability for each PMT.

N. Prouse ICHEP, 29 July 2020



Generated ring examples  Hitprobabity

X
Hit probability Mean charge
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Generative networks

 |nitially did some studies with -_-

variational auto-encoders (VAE). Raridorly generaied niew evants
Interpolation results ok in energy
but poor in angle. Not further
pursuing at this moment.

details: A. Abhishek et al., arXiv:1911.02369

Interpolate between 200 MeV and 800 MeV events

e Pursuing GANs for synthetic data
generation (multiple derived tasks)

Monet <_ Photos

e CycleGAN* to learn
transformation between MC and
simulated data

*J.Y.Zhu et al., ICCV 2017
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