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• At LHCb we are interested in identifying jets coming from heavy flavour quarks (  and  quarks)


• This is achieved with jet flavour tagging


• In particular for our physics case we considered b-jet flavour tagging 

• In Run I the b-jet flavour tagging has been performed with the muon tagging approach: the charge of the 
highest  muon inside the jet is used to tag the quark flavour (semi-leptonic decay)

b c

pT

The Physics case
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• Try to distinguish jets coming from  and  quarks

• Fundamental technique to measure  charge asymmetry


•  The asymmetry is sensitive to New Physics

b b̄
bb̄

Abb̄
C =

N(Δy > 0) − N(Δy < 0)
N(Δy > 0) + N(Δy < 0)

LHCb-PAPER-2014-023 Phys. 
Rev. Lett. 113 (2014) 082003

Δy = yb − yb̄



• Recently Machine Learning (ML) algorithms have been developed to solve HEP problems


• Jet sub-structure’s variables are used as input


• We would like to solve some “open problems” of ML:


• Understand what the algorithm is doing (e.g. consider and measure correlations between features)


• Real time application: prediction time ~ ns

The Physics case
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LHCb data

What is already 
been done

What we are 
going to do



What is a TTN?
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• Typical operations are:


• Tensor contractions


• Tensor reshaping


• Tensor factorisation 


• The approximation is controlled by the bond dimension 


• Several geometries are available:
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• Tensor Networks are a mathematical tool to investigate quantum many-body systems on classical computers 

• Efficient representation of a quantum wave-function 


• Approximation of a high-order tensor by a set of low-order tensors with a typical geometry

|ψ⟩

 parameters2N

 parameters2Nχ2



• A TTN can be used as a classifier for supervised ML problems


• Data sample  are encoded in dimensional feature space and subsequently classified





• A suitable  for a TTN is a product of N local feature maps  

                                                                      


• Finally the prediction output is a probability


                                                                        


x

f(x) = W ⋅ Φ(x)

Φ(x) Φsi

Φ(x) = Φs1(x1)Φs2(x2)…ΦsN(xN)

𝒫l =
|⟨Φ(x) |ψl⟩ |2

∑l |⟨Φ(x) |ψl⟩ |2

What is a TTN?
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Raw data Mapping to “spins” Training and evaluating TTN Prediction

Φsi(xj) = [cos ( πx′￼i

2 ), sin ( πx′￼i

2 )]
each feature  is represented  

by a “quantum spin”
xi

 = feature map

 = weight tensor


 = decision function

Φ(x)
W

f(x)

 = TTN for a class label |ψl⟩ l



Description of our work and results

“Quantum-inspired Machine Learning on high-energy physics data”

Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide Zuliani, Timo Felser, Donatella Lucchesi, Simone Montangero
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• Monte Carlo samples from LHCb Open Data are used


•  di-jets events at  are considered, with the following kinematic cuts:


• 


• , where  is the pseudorapidity 


• Both jets contain a Secondary Vertex (SV-tagging)


• Inside each jet , , ,  and  with highest  are selected


• For each particle, three variables are considered: ,  and  where:


•  is the transverse momentum with respect to jet axis


•  is the distance between the particle and jet axis in the  space


• Finally the jet charge  is also considered

bb̄ 13 TeV

pT > 20 GeV

2.2 < η < 4.2 η η = − log [tan (θ/2)]

μ± e± π± K± p/p̄ pT

q prel
T ΔR

prel
T

ΔR (η, ϕ)

Q =
∑ prel

T,i qi

∑ prel
T,i

Data selection
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16 variables are used to 
describe jet substructure} “inclusive” jet 

tagging algorithm



• A TTN and a Deep Neural Network (DNN) are used as classifiers


• The output of both methods is the probability  to classify a jet as generated by a - or a -quark


• For values of probability  a jet is classified as generated by a -quark


• For values of probability  a jet is classified as generated by a -quark


• The “figure of merit” for the tagging algorithm performance is the tagging power 





• Both classifiers’ performances are compared with the standard muon tagging approach


• Cuts are applied to the probability distribution to maximize the tagging power

𝒫b b b̄

𝒫b > 0.5 b

𝒫b < 0.5 b̄

εtag

εtag = εeff ⋅ (2a − 1)2

Analysis main points

Davide Zuliani Quantum-inspired Machine Learning on high-energy physics data 7

 = efficiency, fraction of jets where 
the classifier takes a decision


 = accuracy, fraction of jets where 
the classifier takes the right decision

εeff

a



• Both ML approaches outperform the standard muon tagging approach by a factor ~ 10


• Better performances are obtained for lower jet 


• Both TTN and DNN have similar performances as a function of jet  

• The output of the classifiers are greatly correlated


• Test on physical variables (  and  distributions): no biases found

pT

pT

pT η

Results (1)
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• TTN

• DNN

• Muon

• 


•
b
b̄



• Despite the similar performances, we obtain different distributions for the two classifiers


• Applied cuts (  and ) to maximize the tagging power are shown


• The TTN is able to spot the presence of a muon inside the jet (peaks at ) 

• The DNN lacks these confident predictions

ΔTTN ΔDNN

𝒫b = 0,1

Results (2)
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• Total

• Correct

• With 

muon

• Total

• Correct

• With 

muon

Probability distribution for 
jets with a muon inside}

TTN probability distribution DNN probability distribution



• TTN allows to measure correlations and entanglement within the classifier


• The most important features are selected for the classifications:


• If two features are highly correlated, it is possible to neglect at least one of them


• If the entropy of a set of features is low, all features from that set can be discarded

Insights on data with TTN
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• This algorithm is called Quantum Information Post-learning feature Selection (QuIPS)


• The 8 most important variables (“best 8”) are selected and compared with the full 16 variables model



• Prediction time plays an important role in data classification


• In the TTN context it is possible to modify the bond dimension , as to target a specific prediction time


• Key point: this can be done without retraining the TTN 

• This algorithm is called Quantum Information Adaptive Network Optimization (QIANO)


• The TTN is trained with a maximum bond dimension 


• After the training the TTN is truncated to a specific  via Singolar Value Decomposition


• The critical amount of information is kept 

• The truncated TTN can classify data in lower computational time

χ

χmax

χ < χmax

Insights on data with TTN
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• Both QuIPS and QIANO algorithms are applied to the 16-variables complete model 

• By selecting the best 8 variables via the QuIPS algorithm we lose only ~1% of accuracy


• Applying QIANO algorithm results in a reduction of average prediction time  from  to 


• Applying both QuIPS and QIANO:  and still compatible accuracy

tpred 345 μs 37 μs

tpred ∼ 19 μs

Results
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• Complete model

• Best 8 

• Muon tagging

• Worst 8

• Complete model 


• Complete model 


• Complete model 


• Best 8 


• Best 8 

• Muon tagging

(χ = 100)
(χ = 50)
(χ = 5)

(χ = 16)
(χ = 5)

Planning to parallelize using 
GPUs: speed-up ~ 10x-100x

Just applying the 
QuIPS algorithm

Applying both the QuIPS 
and QIANO algorithms



• New ML algorithms are required to analyze LHC data, particularly in future runs


• TTNs are a suited method for supervised ML problems, such as jet flavour tagging


• Comparable performances w.r.t. DNNs and outperform standard jet tagging algorithms


• Measure correlations and entropy between input variables


• Lower prediction times due to truncation of TTN after the training


• For the future…


• Next more complex task:  vs.  jet flavour tagging


• Real time application

b c

Conclusions
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Thank you for your attention!
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