

ATLAS ITk Pixel Detector Overview

Stefano Terzo (IFAE, Barcelona)

on behalf of the ATLAS collaboration

EXCELENCIA SEVERO OCHOA BIST Barcelona Institute of Science and Technolog

International Conference on High Energy Physics (ICHEP) Prague, 28th July 2020

LHC upgrade

Phase-2 challenges

Particle multiplicity

- About 10 times more track density
 - Needs better tracking granularity
 - Cope with increased readout rates
- Radiation damage
 - Radiation dose becomes critical closer to the beam line
 - Total Ionizing Dose (TID) up to 10 MGy
 - Particle fluence up to 2 x 10¹⁶ n_{eq}cm⁻² in the pixel region
- Present Inner Detector system will be replaced with a full silicon Inner Tracker (ITk)
 - Maintain/improve the present tracking performance in the HL-LHC environment
 - Occupancy < 1%
 - Minimize material
 - Radiation hardness

The new ITk detector

- 4 strip and 5 pixel barrel layers + 2x6 strip disks and pixel ring layers
 - Coverage up to 4 eta with at least 9 space point per track
 - Possibility to replace the two innermost pixel layers (reduce radiation damage)

Current pixel system ~1.9 m² of active area

> 2000 modules 92 Mega-pixels

New ITk pixel system ~13 m² of active area 9400 modules 1.4 Giga-pixels

ITk pixel layout

- Outer Barrel and forward pixels
 - n-in-p planar silicon sensors (150 μm thick)
 - Quad modules: 4472 (barrel) + 2344 (rings)
- Inner pixel layers (replaceable)
 - Thin n-in-p planar silicon sensors (100 µm thick)
 - Quad modules: 240 (barrel) + 920 (rings)
 - 3D silicon sensors
 - "Pseudo" Triplets modules
 - Single sensors: 288 (barrel) + 900 (rings)
 - 34 mm from the beam line

quad

flex

AS

A new Front End chip

• Present RD53A large prototype in 65 nm

- Common ATLAS and CMS R&D
- Small pixel size: 50 x 50 μm²
- Three different Analog Front End (FE)
- Integrated shuntLDO regulators for serial powering

• Full size chip ITkPixV1

- Produced in 65 nm technology
- Radiation hard > 5 MGy ($10^{16} n_{eq} \text{cm}^{-2}$)
 - Single Event Effects (SEE) hardened
- In time threshold < 1 ke
- Trigger rate: 1 MHz
- High hit rate: 3 GHz/cm²
- Improved shuntLDO design for serial powering
- Data format including compression
- Command forwarding

First ITkPixV1 chips ready for module assembly

S

Institut de Física d'Altes Energies

Planar sensors

• Thin n-in-p planar sensors

- IBL is presently using 200 μm n-in-n planar sensors with 50x250 μm² pixel cells
- ITk will use n-in-p technology (single side process) with 50x50 μm² pixel cells
 - 150 μm for the outer layers
 - 100 μm for the inner Layer-1 (more rad-hard)

Performance required

- Hit efficiency >97%
- Bias voltage at end of life up to:
 - 600 V for 150 μm active thickness
 - 400 V for 100 μm active thickness

• Optimisation of the final design

- Different biasing solution
 - Punch through (PT)
 - Bias Rail (BR) and bias resistor
 - Temporary Metal (TM)
- Dimension of the n+ implant

Market Survey ongoing...

Results foreseen for the end of the year

3D sensors

S. Terzo (IFAE, Barcelona) - ICHEP 2020

New single-side technology

- Conductive support wafer (Si-Si)
- Both electrods etched from the same side
- Thin active substrates (150 μm)
 - Reduce cluster size and data rates

• Small pixels (high occupancy + resolution)

- Rings: 50x50 μm²
- Flat barrel: 25x100 μm²

Superior radiation hardness (@1e16 n_{eq}/cm²)

- High efficiency: >97%
- Low operational bias voltage: 80-140 V
- Low power dissipation < 10 mW/cm² (@-25°C)

Data transmission

System test development with all elements

ATLAS Demonstrator programs

• Thermo-mechanical studies

- Evaluation of thermal performance and manufacturing variability ongoing
- Simulation results are within thermal specifications
- Endcap system tests with FE-I4-based prototypes
 - Double-sided carbon fibre stave with 12 quad modules
 - No additional noise observed after mounting
 - Ring-0: 12 module ring structure (2 SP chains)

Outer barrel demonstrator programme

- Thermal and electrical prototypes
- Full size prototype (1.6 m) with 7 quads and 13 duals
 - 6 serial powering chains with electrical modules

Summary

- Preparing a new pixel detector to face the HL-LHC challenges:
 - Radiation hardness
 - Low material
 - Increased granularity
- The new Inner Tracker: 5 pixel barrel layers and rings
 - A new radiation hard readout chip ready
 - Planar sensors with 50x50 μ m² pixels (outer layers)
 - 3D sensors with 50x50 and 25x100 μ m² (innermost layer)
 - Serial powering
 - CO₂ cooling

Several Market Surveys, final tests and developments ongoing

- Moving from design to prototyping
- Getting **ready** for the pre-productions

Other ITk presentations

TALKS

Dennis Sperlich (on Tuesday 28)
 The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

POSTERS

- Florian Hinterkeuser (on Thursday 30th)
 Development and evaluation of prototypes for the ATLAS ITk pixel detector
- Test Beam Studies of Barrel and End-Cap Modules for the ATLAS ITk Strip Detector before and after Irradiation
- Radiation-Hard Silicon Strip Sensors for the ATLAS Phase-2 Upgrade

BACKUP

Module concept

Quad module (outer layers and rings)

- 1 large single sensor bump bonded to 4 readout chips
- Common design for all outer layers
- Longest Serial Powering (SP) chain of 14 modules

• Pseudo Triplets (innermost layer and rings)

- 3 single-chip bare modules connected to the same flex
- Power and ground in parallel + 1 data connector
- Limited space for services -> SP is essential
 - Longest SP chain in LO: 5 SP units in endcap rings

Wire-bond encapsulation

- Damage protection and to avoid corrosion
- Evaluating Parylene, mechanical protection and alternative materials

Linear triplet flex (barrel)

15

S