
ICHEP 2020, Computing and Data Handling session
July 28, 2020

Parallelization for HEP Event Reconstruction

S.Lantz, K.McDermott, M.Reid, D.Riley, P.Wittich (Cornell) 
S. Berkman, G.Cerati, A.Reinsvold Hall, M.Kortelainen, M.Wang (Fermilab) 

P.Elmer, B.Wang (Princeton) 
L.Giannini, S.Krutelyov, M.Masciovecchio, M.Tadel, F.Würthwein, A.Yagil (UCSD) 

B.Gravelle, B.Norris (UOregon) mkFit and SciDAC4-HepReco projectsemail: cerati AT fnal.gov



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Recent Changes in the Computing Landscape

• Due to power limits, the CPU frequency is 
no longer growing exponentially: 
- nothing for free anymore
- since 2005, most of the gains in single-thread 

performance come from vector operations
- growth in number of transistor leads to an 

increase in logical core count: multithreading

• Changes can become opportunities:
- exploit both levels of parallelization to avoid 

sacrificing physics performance!
- new technologies dominating the market, e.g. GPU
- exa-scale machines are being built at HPC centers

2



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Preparing for the Next Generation of Experiments
• Next generation of HEP experiments will feature unprecedented detector 

granularity or size, and will be exposed to beams of unprecedented intensity
• These lead to an increase in data volume and corresponding increase in 

processing time, so exploiting new computing technologies is a vital need
• This talk focuses on computing R&D for reconstruction in CMS and at 

LArTPC experiments, with the long term goal of improving the physics reach of 
HL-LHC and DUNE

3

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule
arXiv:2002.02967

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule
https://project-hl-lhc-industry.web.cern.ch/content/project-schedule


2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

LHC Reconstruction Challenges

4

• Increasing pile-up (PU) drives exponential increase in event reconstruction processing time
• Tracking is the dominant contributor to the reconstruction time, and it’s vital for the physics 

output of HEP experiments
- reducing the tracking phase space implies significantly worse physics sensitivity

• Kalman filter-based tracking is the “standard” tracking method in HEP
- demonstrated high efficiency physics performance, robust handling of material effects
- track building is a combinatorial algorithm traditionally implemented in serial fashion,  

challenging to parallelize



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Parallelizing Tracking: the mkFit Approach
• mkFit mission: parallelize Kalman filter track building

• Matriplex library designed for SIMD processing of track candidates
- bunches of small matrices operating in lock-step, auto-generated vectorized code is aware of matrix sparsity

• mkFit is multithreaded at multiple levels with TBB tasks: events, detector regions, bunches of seeds
• Reduce memory footprint with lightweight detector description (geometry, material, magnetic field)
• Minimize memory operations (number and size) within combinatorial branching
- bookkeeping of explored candidates, clone only best ranking ones at each layer (with per seed cap)

5

Matriplex memory layout mkFit geometry representation



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

mkFit Physics and Computing Results
• mkFit track building achieves comparable physics performance as standard CMS tracking (first iteration)
• Standalone application achieves speedups of up to 3x from vectorization and up to 35x from 

multithreading across multiple collision events
- vectorization speedup computed on main track building function only, evaluated on Intel Skylake Gold processor

• mkFit is integrated in CMS framework (CMSSW), with a single threaded application it is 6x faster
- mkFit compiled using icc and AVX-512 extensions
- track building with mkFit is faster than CMSSW track fitting!
- integration of mkFit in CMS workflows is currently under investigation

6

10 20 30 40 50 60
Number of Threads

0

5

10

15

20

25

30

35

40

Av
er

ag
e 

Sp
ee

du
p 

pe
r E

ve
nt

1 Events
2 Events
4 Events
8 Events
16 Events
32 Events
64 Events
Ideal Scaling

Concurrent Event Scaling on SKL-SP



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

mkFit paper — hot off the press!

• More details about the mkFit algorithm and results in our paper
- arXiv:2006.00071, recently accepted for publication in JINST

7



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Next Steps: Strip Unpacking and Clustering on GPU
• Silicon Strip Hits are the main input to the mkFit algorithm
- producing them can be a limiting factor to using mkFit in CMS trigger

• GPUs can help to speed up the processing of Si-Strip data
- Unpacking of raw data from CMS Silicon Strip with SoA format
- Parallelized implementation of “three threshold” clustering algorithm
- Initial standalone version: multi-event processing using OpenMP with 

nested parallelism in CPU, and CUDA streams in GPU
• Recently developed a CMSSW producer, with CUDA 

application as “ExternalWorker”
- time split roughly evenly between data transfers and computations
- workload is not enough to saturate a GPU, multi-processing is being 

studied to achieve better utilization
- achieve an aggregate throughput ~1.15 KHz, projected to be 50% 

faster than CPU-only equivalent process
• Next steps: evaluate hit positions on the GPU, produce hits 

in mkFit data format

8

“Three threshold” clustering

data  
transfers

GPU activity

si
ng

le
 k

er
ne

ls

NVPROF screenshot



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Next Steps: Portable Code Explorations
• NVIDIA and CUDA are the current leaders in the GPU market, but the 

future will bring GPUs from a variety of vendors and possibly different 
heterogeneous solutions
• Need to explore solutions for code portability across platforms to 

avoid re-writing software for each platform
- many different options are emerging, mainly compiler directives or libraries

• Started an effort to test different portable implementations using a 
single function from the mkFit code
- function is the propagation of track parameters to a given position along the z axis
- representative of full code in terms of math operations types;  

main limitation is that it does not include combinatorics
• Early tests using OpenACC and Kokkos give promising results
- on a Summit Node OpenACC GPU application almost 10x faster than OpenMP 

application fully loading the CPU
- performance of Kokkos CPU version is similar to nominal implementation with 

dedicated Matriplex library
• Ongoing work towards a more completed suite of measurements, 

including OpenMP, OpenACC, Kokkos, Alpaka, Eigen, as well as 
different compilers

9

Threads

S
ec

on
ds

 (l
og

 s
ca

le
)

0.1

0.2

0.4
0.6

1

2

4
6

10

20

10 20 30 40

kokkos avx512 matriplex avx512

Execution time for p2z, Intel Xeon E5-2699 v3 @ 2.30GHz



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Reconstruction for LArTPC 𝜈 experiments

• Charged particles produced in neutrino interactions 
ionize the argon, ionization electrons drift in electric 
field towards anode planes

• Sense wires detect the incoming charge, producing 
beautiful detector data images

• Reconstruction in LArTPC experiments is challenging 
due to unknown interaction point, many possible 
topologies, noise, contamination of cosmic rays
- Takes O(minutes)/event in MicroBooNE
- ICARUS ~5x bigger, DUNE Far Detector O(100)x bigger

• LArTPC detectors are modular in nature ➔ parallelism!

10
NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

wire

tim
e



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Parallelization of HitFinder Algorithm
• Hit finding: identify pulses and determine their peak position and width
- takes a significant fraction of the reconstruction workflow (few to few tens of %, depending on the experiment)

• Wires can be independently processed: suitable to demonstrate speedup potential by 
parallelizing LArTPC reconstruction

• Hit finder algorithm has been successfully parallelized:
- replaced Gaussian fit based on Minuit+ROOT with a local implementation of Levenberg-Marquardt minimization
• early tests showed this lead to ~8x speedup in the minimization code already

- vectorize specific loops within the minimization algorithm, typically across data bins
• main limitations: only a subset of the code is vectorized, number of bins is same order as vector unit size

- two-level nested multithreading parallelization over events and regions of interests in wires

11

Tracy Usher 
LArSoft Coordination Meeting 

June 19, 2018

GausHit Finder 
Updates

Pulse	height	vs	time	bin



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Parallel HitFinder Results
• Vectorization gives ~2x speedup when compiling with icc+AVX512 (both Skylake Gold and KNL)
• OpenMP multi-threading shows near ideal scaling at low thread counts, with speedups increasing 

up to 30x (95x) for 80 (240) threads on Skylake Gold (KNL)
• Physics output nearly identical to original algorithm
• New version integrated in the experiment codebase (larsoft) and adopted by ICARUS and DUNE
- Single-threaded application up to 10x faster than previous version, significant impact on reco time of experiments!

12

0

0.5

1

1.5

2

2.5

NO-VEC, NO 
PRAGMAS

SSE2, PRAGMAS AVX512, NO 
PRAGMAS

AVX512, PRAGMAS

SP
EE

D 
RE

LA
TI

VE
 TO

 `N
O-

VE
C,

 N
O 

 P
RA

GM
AS

`

KNL SKYLAKE GOLD

KNL SKL
Vectorization performance

sample: 𝜈+cosmics

0.02− 0.015− 0.01− 0.005− 0 0.005 0.01 0.015 0.02
Default Hit Time - Marquardt Hit Time (Ticks)

10

210

310

410

510

 N
um

be
r 

of
 E

ve
nt

s

98% of hit time  
within 0.02 of  
original result



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Studies of FFT libraries
• Fast Fourier Transform (FFT) is a core component of signal processing algorithms for LArTPC
• Comparing state of the art FFT libraries: FFTW and MKL
- MKL is precompiled with AVX-512; FFTW compiled with gcc and different vector extensions

• Test single fwd+inverse FFT on wire waveform data: 
- Up to ~3.5x speedup for FFTW with AVX2 and AVX-512; MKL ~10% faster than FFTW

• Also starting to look into FFT implementations for GPU

13

0

10

20

30

40

50

60

0 5 10 15 20

TI
M

E 
(a

. u
.)

N THREADS

FFTW MKL

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

SP
EE

DU
P 

(R
EL

AT
IV

E 
TO

 N
OV

EC
)

N THREADS

FFTW Vectorization
novec SSE AVX2 AVX-512



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

LArTPC Reconstruction on HPC
• Work is ongoing to develop a reconstruction workflow for HPC  

centers. Initial target experiment and center are ICARUS  
and Theta@ALCF, respectively. 
• Goal is an efficient utilization of parallel resources of HPC  

centers, which requires building algorithm code with custom  
compilers and vector extensions 
- the workflow is designed to be part of a central campaign

• Building experiment’s software with Spack would allow us to  
use custom compilation options
- icc and AVX-512 are needed for optimal vectorization speedups
- initial tests of Spack build are complete
- next steps: customization for specific packages, building on Theta

• Workflow being defined in collaboration with HEP-on-HPC SciDAC project
- https://computing.fnal.gov/hep-on-hpc/ 
- use HDF5+HEPnOS to organize the data: https://xgitlab.cels.anl.gov/sds/hep/HEPnOS
- framework uses DIY to distribute the workload across nodes: https://www.anl.gov/mcs/diy-doityourself-analysis 

14 LLNL-PRES-806064
This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. 
Lawrence Livermore National Security, LLC

spack.io

Managing HPC Software Complexity with
Spack

Supercomputing 2019 Full-day Tutorial
November 18, 2018

Dallas, TexasThe most recent version of these slides can be found at:
https://spack-tutorial.readthedocs.io

https://computing.fnal.gov/hep-on-hpc/
https://xgitlab.cels.anl.gov/sds/hep/HEPnOS
https://www.anl.gov/mcs/diy-doityourself-analysis
https://computing.fnal.gov/hep-on-hpc/
https://xgitlab.cels.anl.gov/sds/hep/HEPnOS
https://www.anl.gov/mcs/diy-doityourself-analysis


2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Snowmass advertisement
• Join the Snowmass process to plan for the next years and prioritize possible 

future directions and projects: https://snowmass21.org/ 

• Modernizing the reconstruction software is crucial for the future of HEP 
experiments. Join the Computational Frontier and the “Experimental 
Algorithm Parallelization” Working Group, which is particularly relevant for the 
topics of this talk
- Computational Frontier Workshop: https://indico.fnal.gov/event/43829/ 
- Experimental Algorithm Parallelization WG:  

https://snowmass21.org/computational/algorithms 

15

https://snowmass21.org/
https://indico.fnal.gov/event/43829/
https://snowmass21.org/computational/algorithms
https://snowmass21.org/
https://indico.fnal.gov/event/43829/
https://snowmass21.org/computational/algorithms


2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Summary

• Projects are actively working to exploit new computing architectures to speed 
up reconstruction of current and future HEP experiments

• mkFit: Kalman filter track building with large speedups from parallelization. 
Integrated in CMSSW, 6x faster single thread application. Work ongoing 
towards deployment in workflows and exploring GPU applications.

• LArTPC reconstruction: vectorized and multi-threaded hit finder O(10)x faster 
and adopted by experiments. Work in progress to define workflow for efficient 
usage of HPC centers

16



2020/07/28 Parallelization for HEP Event Reconstruction - ICHEP2020

Acknowledgments
• Project websites:
- https://trackreco.github.io/
- https://computing.fnal.gov/hepreco-scidac4/

• Funding agencies and collaborating institutions:

17

https://trackreco.github.io/
https://computing.fnal.gov/hepreco-scidac4/
https://trackreco.github.io/
https://computing.fnal.gov/hepreco-scidac4/

