The Light Dark Matter eXperiment

Andrew Whitbeck, Texas Tech University

on behalf of the LDMX collaboration

Dark Matter: a thermal-relic?

 A compelling and predictive explanation for the presence of a relic abundance of DM

 Much of the experimental effort has targeted WIMPs

- How do we build a comprehensive program to test the thermal-relic paradigm?
 - A focus of several *community driven workshop* to broaden DM program

Light dark matter phenomenology

Light dark matter parameter space is a natural evolution of WIMP search program Requires new light mediators:

simple, predictive model: vector mediator which mixes with photon

Electrons play a central role in dark matter & light mediator searches

Light dark matter phenomenology

accelerator-based

Direct annihilation Invisible decays $2 m_{\chi}$ mχ

Light dark matter phenomenology

e.g. analogs with proton couplings

LDMX Experimental concept

LDMX Experimental concept

Signal kinematics

 A' carries away mostly of the beam energy and converts it to invisible particles

- Recoil electron p_T spectrum of signal depends on m_{A'} and is an important experimental handle
 - both for background discrimination and signal characterization

Signal kinematics

 A' carries away mostly of the beam energy and converts it to invisible particles

- Recoil electron p_T spectrum of signal depends on $m_{A'}$ and is an important experimental handle
 - both for background discrimination and signal characterization

Backgrounds

rela	ative	incoming
rate	e 1 00	o ⁻
Т	•100	E —
	10-1	
	10-2	
	10-3	
	10-4	
	10-5	
	10-6	
	10-7	
	10-8	
	10-9	
	10-10	
	10-11	
	10-12	
	10-13	
	10-14	
	10-15	"visible"
	10-16	backgrou
		"invisible"

¹⁰ ICHEP 2020

LDMX Experimental concept

11 **ICHEP 2020**

Detector concept

12 **ICHEP 2020**

ICHEP 2020

Tracking

- Silicon strip spectrometers:
 - single 1.5T dipole magnet with 2 field regions
 - tagger tracker: located in magnet bore
 - measure incoming momentum
 - efficiently identify off-energy beam components
 - recoil tracker: located in fringe field
 - measure outgoing momentum
 - good recoil momentum resolution (optimized for 1-2 GeV)

EM Calorimeter

- - events

15

Hadron calorimeter

- Steel/plastic sampling calorimeter

Neutron energy = 2.0 GeV

Experimental handles

PN background rejection

Recent work exploring high-statistics MC samples & background veto performance: <u>https://arxiv.org/abs/1912.05535</u>

			7		
		Photo-nuclear		Muon conve	
		Target-area	ECal	Target-area	
om. ult. ergy T	EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4
	Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	8
	Trigger, ECal total energy $< 1.5 \text{ GeV}$	1×10^8	2.63×10^8	1.6×10^7	1.
	Single track with $p < 1.2 \text{GeV}$	2×10^7	2.34×10^8	3.1×10^4	1.
	ECal BDT (> 0.99)	9.4×10^5	1.32×10^5	< 1	
	HCal max $PE < 5$	< 1	10	< 1	
	ECal MIP tracks $= 0$	< 1	< 1	< 1	

Integrated veto background performance

PN background rejection

No events remain after all vetoes

19 **ICHEP 2020** signal efficiencies range from 30-50%

Integrated veto background performance

	Photo-nuclear		Muon con	
	Target-area	ECal	Target-area	
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	
Trigger, ECal total energy $< 1.5 \text{ GeV}$	1×10^8	2.63×10^8	1.6×10^7	
Single track with $p < 1.2 \text{GeV}$	2×10^7	2.34×10^8	3.1×10^4	
ECal BDT (> 0.99)	9.4×10^5	1.32×10^5	< 1	
HCal max $PE < 5$	< 1	10	< 1	
ECal MIP tracks = 0	< 1	< 1	< 1	

background veto performance vs final state

Projected sensitivity

Note: $m_{A'} = 3m_{\chi}$ *is conservative assumptions*

²⁰ ICHEP 2020

1x10¹⁶ EoT @ 8 GeV

4x10¹⁴ EoT @ 4 GeV

m_{χ} [MeV]

Ongoing work

- Optimizing high mass reach
 - higher energies
 - different targets _
- Optimizing algorithms and analysis techniques
- Detector prototyping ramping up
 - Enabled by recent funding from DOE & Swedish foundation through Lund University

Summary

- LDMX is an electron fixed target experiment that aims to fully exploit the missing momentum technique
 - Impressive breadth of sensitivity to asymmetric, thermal scalar elastic, Majorana, and inelastic/Pseudo-Dirac scenarios
- Sensitivity beyond dark matter:
 - More general exploration of hidden sector physics and other light
 - 10^{-1} BABAR 10^{-8} 10^{-} $\epsilon^2 \alpha_D (m_\chi/m_{A'})^4$ 10^{-10} E137 10^{-11} 10^{-12} UCSB J 10^{-14} Caltech 😤 Fermilab 10^{-15} LUNDS **UNIVERSITET** 10NATIONAL ACCELERATOR 10° UNIVERSITY VIRGINIA LABORATORY TEXAS TECH **STANFORD** UNIVERSITY UNIVERSITY
 - degrees of freedom that couple to electrons is possible - e.g. displaced vertex signatures from visibly decaying mediators Electronuclear measurements to support neutrino experiments
- This is an exciting time for LDMX as we begin to move from concept to creation!

Light dark matter targets

24 **ICHEP 2020**

Accelerators produce dark matter relativistically, minimizing effect of different Lorentz structures.

ECal/HCal Vetoes

MIP tracking in ECal

LDMX sensitivity

• Varying $m_{A'}/2m_{\chi}$, LDMX remains sensitive over much of the parameter space where $m_{A'} > 2m_{\chi}$

1	
na)	M
ac)	
	mile -

