

Latest Results and Status of PandaX Experiment

Ning Zhou
Shanghai Jiao Tong University

ICHEP2020, 2020-07-30

Outline

♦ WIMP search result with PandaX-II full exposure data (131.7 ton-day)

❖Preliminary result of Axion search from low energy ER events

Status of next generation PandaX-4T experiment

PandaX Collaboration

❖Particle and Astrophysical Xenon Experiment

Formed in 2009

China Jinping Underground Laboratory

SHALL MAD TONG ON THE SHALL MAD TONG ON THE

- **❖** Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access: 9 km long tunnel
- **❖CJPL-II:** new experiment halls

Kick-off of CJPL-II facility construction project, July 20, 2019

PandaX Dark Matter Experiment

❖Dual-phase Xenon TPC

- Prompt S1 (scintillation)
- Delayed S2 (ionization)
- 3-dimensional position reconstruction
- Electron recoil vs nuclear recoil discrimination

PandaX-I: 120 kg 2009-2014

PandaX-II: 580 kg 2014-2019

PandaX-4T: 4 ton 2019-

PandaX-II Full Exposure Data

- **❖2019.06** "End-of-Run" completed
- **❖Total exposure: 131.7 ton-day**
 - Run 9: 79.6 days (published)
 - Run 10: 77.1 days (published)
 - Run 11, span 1: 96.3 days
 - Run 11, span 2: 147.9 days

❖Full data analysis

- New position reconstruction
- New detector response model
- Improved background evaluation

New Position Reconstruction

❖Turn off 7 malfunctioned PMTs

5 top and 2 bottom

Simulation-based position reconstruction

Optical simulation of the detector

❖Trained with evenly distributed 83mKr calibration events

New Response Model

Calibration data

ER events: tritium and ²²⁰Rn

NR events: AmBe

♦Nest 2.0 based response model

with data quality cut efficiency

ER Run 9
ER Run 10/11
NR Run 9
NR Run 10/11

Background Sources

Source	Evaluation		
¹²⁷ Xe	35.5 day lifetime, decay away in Run 11		
³ H	Introduced after Run 9, fitted from data, see later		
²²² Rn	Depletion effect from measurement		
⁸⁵ Kr	Not a constant due to air leakage in Run 11		
neutrons	Data-driven estimation		
surface events	Data-driven extrapolation		
accidental events	Newly trained BDT discriminator		

²²²Rn Background

♦ Major ER contribution from ²¹⁴Pb

- Charged Rn progenies attracted to the cathode with negative HV
- Less contribution in fiducial volume: "depletion effect"

♦ New method to evaluate ER event rate from ²¹⁴Pb

- Interpolation from ²¹⁸Po and ²¹⁴Bi
- The depletion ratio measured from ²²²Rn calibration (end-of-run)

❖PandaX-II ²¹⁴Pb level: 10µBq/kg

 10^{-1}

Surface Background

Surface events

- Mostly ER events from Rn plate-out
- Losing S2 on the surface, shifting below ER region

❖ Data-driven extrapolation from outside FV region

Neutron Background

New evaluation based on high energy gammas (HEGs)

- Neutron events associated with HEGs (neutron capture, nuclear de-exciation)
- Scale factor (neutron events / HEGs) from MC simulation with HEGs included
- Tested in AmBe calibration data

SCIENCE CHINA Physics, Mechanics & Astronomy(2019)

❖PandaX-II full exposure: 3.0±1.5 events in WIMP signal region

Background Budget for Low Energy Events

Compared with Run 10, more background contributions in Run 11

85Kr and tritium

Preliminary Hem 85Kr		Run 9	Run 10	Run 11, span 1	Run 11, span 2	
preliff 85Kr		1.19 ± 0.2	0.18 ± 0.05	0.20 ± 0.06	0.40 ± 0.07	
	$^{222}\mathrm{Rn}$	0.19 ± 0.10	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02	
Flat ER	$^{220}\mathrm{Rn}$	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	
(mDRU)	ER (material)	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	0.20 ± 0.10	
	Solar ν	0.01	0.01	0.01	0.01	
	$^{136}\mathrm{Xe}$	0.0022	0.0022	0.0022	0.0022	
Total flat ER (mDRU)		1.61 ± 0.24	0.57 ± 0.11	0.61 ± 0.12	0.81 ± 0.12	
127 Xe (mDRU)		0.14 ± 0.03	0.0069 ± 0.0017	< 0.0001		
$^{3}\mathrm{H}$	(mDRU)	0 0.17				
Neutro	Neutron (mDRU)			0.0022 ± 0.0011		
Accidental (event/day)		0.014 ± 0.004				
Surface (event/day)		0.041 ± 0.008		0.063 ± 0.0013		

WIMP Search

- ♦\$S1 [3, 45] PE and Fiducial volume 329 kg
- **❖Blinded analysis for Run 11**
- **❖Total 1220 events, 38 below NR median**
 - Consistent with background expectation

reliminary	ER	Accidental	Neutron	Surface	Total fitted	Total observed
Run 9	381.1	2.20	0.77	2.13	387 ± 23	384
Below NR median	2.3	0.46	0.36	2.12	5.3 ± 0.5	4
Run 10	145.6	1.07	0.47	2.66	150 ± 14	143
Below NR median	1.3	0.23	0.22	2.65	4.4 ± 0.6	0
Run 11, span 1	219.4	1.03	0.59	6.23	227 ± 19	224
Below NR median	3.7	0.32	0.32	6.20	10.5 ± 1.1	13
Run 11, span 2	451.0	1.60	0.91	9.68	464 ± 30	469
Below NR median	7.5	0.50	0.49	9.64	18.2 ± 4.2	21
Total	1197.2	5.9	2.72	20.7	1227 ± 51	1220
Below NR median	14.9	1.51	1.39	20.6	38.4 ± 6.0	38

Event Distributions

Distribution of events with high WIMP hypothesis likelihood

• 3 events in Run 9 and 7 events in Run 11

Constraints on WIMP Model

❖Spin-independent Interaction

Exclusion limits on SI

- 2.1x10⁻⁴⁶ cm² for 40 GeV
- 1.4x10⁻⁴⁵ cm² for 400 GeV

❖Will submit tomorrow

Best-fit for m_c =400 GeV 4.2 events -> $\sigma_{\chi n}$ =3.2x10⁻⁴⁶ cm² p-value of 0.19 -> 0.92 σ

Axion Search

Axion signal in xenon detector: low energy ER events

♦With full exposure

- Expand the energy window to 25 keV
- Reduce the FV to 250 kg

Dominant background: Spectrum fitting to the data

- 127Xe: decay away in Run 11
- Flat ER: 85Kr, 222Rn, materials
- Tritium: appearing since Run 10

Critical background spectra obtained from calibration

Background Spectrum

❖Tritium spectrum

- Two injection calibrations
- T1(Right after Run 9) and T2 (End of run)

♦Flat ER spectrum

Estimated from ²²⁰Rn calibration after Run 10

Systematic uncertainty

- Detector response model parameters
- Non-linearity of data-taking baseline suppression
- Theoretical uncertainty

Tritium Background

STATE THE STATE OF THE STATE OF

- **♦** No direct measurement
- **❖**Unbinned likelihood fit on Run 10, 11-1, 11-2 independently

Run	Tritium level		
10	0.044±0.008 μ Bq/kg		
11-1	0.050±0.010 μ Bq/kg		
11-2	0.050±0.009 μ Bq/kg		

♦ Consistent with a constant rate

• Total fitted $0.049\pm0.005~\mu$ Bq/kg

Background-only Fit

Fit the data energy spectrum with tritium contribution floating

❖Total data 2200 events

❖ Estimated background 2209.3±46.3

Consistent with data within 1σ

$\begin{array}{ c c c c c c c }\hline Events & Run 9 & Run 10 & Run 11-1 & Run 11-2\\\hline\hline $^{127}\rm{Xe}$ & 81.2 & 3.7 & 0 & 0\\\hline\hline tritium & 0 & 60.4 & 73.3 & 113.9\\\hline accidental & 1.3 & 0.6 & 0.6 & 1.0\\\hline neutron & 0.6 & 0.4 & 0.5 & 0.7\\\hline\hline $^{136}\rm{Xe}$ & 2.6 & 2.5 & 3.1 & 4.9\\\hline flat ER & 574.5 & 196.6 & 325.3 & 761.7\\\hline\hline Total & 660.2 ± 23.5 & 264.2 ± 14.8 & 402.8 ± 19.4 & $882.1 \pm 31.$\\\hline\hline Data & 658 & 259 & 401 & 882\\\hline\hline \end{array}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Run 9	Run 10	Run 11-1	Run 11-2
accidental 1.3 0.6 0.6 1.0 neutron 0.6 0.4 0.5 0.7 136 Xe 2.6 2.5 3.1 4.9 flat ER 574.5 196.6 325.3 761.7 Total 660.2 ± 23.5 264.2 ± 14.8 402.8 ± 19.4 $882.1 \pm 31.$	$^{127}\mathrm{Xe}$	81.2	3.7	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tritium	0	60.4	73.3	113.9
	accidental	1.3	0.6	0.6	1.0
		0.6	0.4	0.5	0.7
Total $660.2 \pm 23.5 \ 264.2 \pm 14.8 \ 402.8 \pm 19.4 \ 882.1 \pm 31.$	$^{136}\mathrm{Xe}$	2.6	2.5	3.1	4.9
AND THE PROPERTY OF THE CONTROL OF T	flat ER	574.5	196.6	325.3	761.7
Data 658 259 401 882	Total	660.2 ± 23.5	264.2 ± 14.8	402.8 ± 19.4	882.1 ± 31.6
	Data	658	259	401	882

Background plus Signal Fit

With tritium and axion contribution floating

Degeneracy confirmed due to similar shapes

❖No significant best-fit signal yield

Similar fitting quality to bkgd-only fit

Indicating limited sensitivity from our data

♦ Analysis is work-in-progress

New Experimental Hall at CJPL-II

❖ A general facility containing an ultrapure water shield of 4500 m³ to host large scale DM and 0v2β experiments

PandaX-4T Experiment

Top PMT array, 3"

❖4-ton liquid xenon in sensitive volume

❖1-in veto PMT 126

Expected Sensitivity

SHAME IN THE SECOND CONTRACT OF THE SECOND CO

- **♦6-ton-year: expecting 10x more sensitive than PandaX-II**
- **♦1-ton-year: definitive test of the XENON1T low energy ER result**

Under Construction

Summary and Outlook

- ❖PandaX-II has completed successfully in 2019
- ❖PandaX-4T experiment, x10 more sensitive than PandaX-II, is the next generation
- Temporary infrastructure construction in B2 hall of CJPL-II recently completed
- Onsite detector assembly is work-in-progress
- **❖Expected commissioning of PandaX-4T: end of 2020**
- **♦**Stay tuned!

Thank You!

Backup

Post-unblinding cut

Cut	Run 9	Run 10	Run 11
All triggers	24502402	18369083	49885025
Single S2 cut	9806452	6731811	20896629
Quality cut	331996	543393	2708838
DM search window	76036	74829	257111
FV cut	392	145	710
BDT cut	384	143	695
Post-unblinding cuts	384	143	693

2nd S2 wrongly identified as multiple S1

Wrongly rconstructed S1 due to coherent _{0.5} poise pickup

Light Yield and Charge Yield

❖Fitted from our calibration events

Consistent with world data

