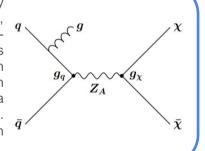
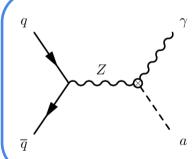
Search for new phenomena in mono-X final states using pp collision data collected in Run-2 by the ATLAS experiment at the LHC

Sergio González Fernández IFAE, Barcelona

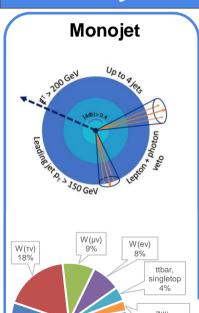

on behalf of the ATLAS Collaboration


ATLAS

Introduction

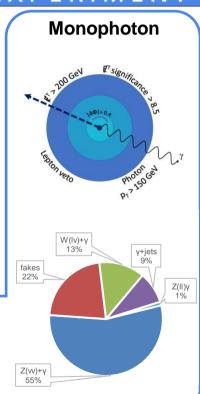
- Cosmological and astrophysical observations point to the existence of a form of matter known as **Dark Matter** (DM) that accounts for about 27% of the total mass-energy of the Universe.
- If DM interacts with the Standard Model, it can be produced at the LHC and **detected indirectly** via initial state radiation (ISR) of the incoming particles or by identifying some Standard Model (SM) particles produced in association with DM.
- Searches focused in these type of signatures are commonly known as mono-X searches. For the rest of this presentation mono-X will refer to monojet and monophoton searches.

Diagram for the pair-production of weakly interacting massive particles (WIMPs) χ , with an exchanged mediator Z_A in the schannel. In this process, the DM particles escape the detector as invisible but can be detected indirectly with an ISR gluon that will hadronize yielding an event with a jet and large momentum imbalance. These type of signatures are searched in the **monojet** analysis.



This diagram shows the production of an Axion Like Particle (ALP) in association of a photon through the mediation of a Z boson in the s-channel. If the ALP is considered invisible, the event can be identified with a single photon event with large momentum imbalance. These type of signatures are searched in the **monophoton** analysis.

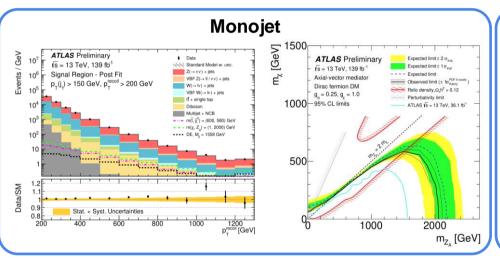
Many theoretical models for new physics propose candidates for Dark Matter. These include simplified WIMP models,
 SUSY interpretations, Large Extra Dimensions and Axion Like Particles.

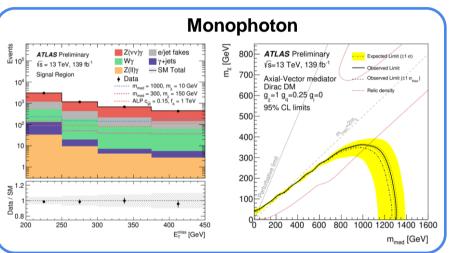

Analyses overview

- Monojet and monophoton searches focus on signatures with large missing transverse momentum associated to jets or photons, respectively.
- The signal region in both analyses focuses on cutting the E_T^{miss} and the p_T of the associated particle (jets/photon). Both apply a lepton veto.
- In both analyses the jet/photon is expected to be **recoiling** of the dark matter particles so a $\Delta \phi$ cut to the E_T^{miss} is also applied.
- The dominant background arises from events with a Z boson decaying into neutrinos. If jets or photons are produced in ISR the event becomes indistinguishable from a monojet/photon signal event.
- The background contamination in the signal region is computed using Control Regions, which are defined in an orthogonal but similar way as the Signal Region.
- Theoretical prescriptions for reweighting V+jets processes yield NNLO (QCD) and NLO+Sudakov logs (EWK) precision.

• A cut on E_T^{miss} significance is introduced to help reduce the contamination from the γ +jets background.

diboson


Z(vv)


58%

Results and Interpretations

No significant deviations to the Standard Model predictions is observed and the results are translated into exclusion limits
for a variety of models with a DM candidate, such as simplified models.

- Both analyses consider for the first time setting exclusion limits on a model that describes Axion Lile Particles interactions
 with the Standard Model.
- The monojet analysis also provides exclusion limits in models related to SUSY, Dark Energy, Large Extra Dimensions and Higgs boson decays to WIMPs.