PROBING HEAVY DARK MATTER WITH ICECUBE HESE DATA

Sergio Palomares-Ruiz

IFIC, CSIC-U. València

ICHEP 2020 | PRAGU

July 29, 2020

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020 PRAGUE CZECH REPUBLIC

HIGH-ENERGY NEUTRINO FLUX

Two types of searches: contained events and through-going muons

A. Schneider [IceCube Collaboration], PoS (ICRC2019) 1004

J. Sttetner [IceCube Collaboration], PoS (ICRC2019) 1017

D. N. Williams [IceCube Collaboration], PoS (ICRC2019) 016

NEW PHYSICS

C. Argüelles, M. Bustamante, A. Kheirandish, SPR, J. Salvado and A. C. Vincent, PoS(ICRC2019)849, 2020

DARK MATTER DECAYS

Can the highest energy IceCube neutrinos be explained by heavy dark matter decays?

Rate ~
$$V N_N \sigma_N L_{MW} \frac{\rho_{DM}}{m_{DM}} \frac{1}{\tau_{DM}} \sim 10/year \rightarrow \left(\frac{\tau_{DM}}{10^{28} s}\right) \left(\frac{m_{DM}}{1 \text{ PeV}}\right) \sim 1$$

B. Feldstein, A. Kusenko, S. Matsumoto and T. T. Yanagida, Phys, Rev. D88:015004, 2013

Can ALL IceCube neutrinos be explained by heavy dark matter decays?

2-year HESE data

combination of soft and hard channels

NEUTRINOS FROM DARK MATTER DECAYS

DARK MATTER DECAYS

Are neutrinos from DM decays compatible with the angular distribution of the IceCube events?

is isotropy better?

Y. Bai, R. Lu and J. Salvado, JHEP 1601:161, 2016

only galactic contribution

Scenario		KS
Astrophysics	Gal. plane Iso. dist.	0.007-0.008 0.20-0.55
DM decay	NFW Isoth.	0.06-0.16 0.08-0.22

excess at 60-100 TeV

M. Chianese, G. Miele, S. Morisi and

E. Vitagliano, Phys. Lett. B757:251, 2016

/			
15	DM	het	ter?
10		DCL	LCI .

S. V. Troitsky, JETP Letters 102:785, 2015

A. Esmaili, S. K. Kang and P. D. Serpico, JCAP 1412:054, 2014

DARK MATTER DECAYS (+ASTRO)

several energy spectrum analyses

Low energies: DM+astro (index=2)

A. Bhattacharya, M. H. Reno and I. Sarcevic, JHEP 1406:110, 2014 C. Rott, K. Kohri and S. C. Park, See also: C. S. Fong et al., JHEP 1502:189, 2015

limits on monochromatic decays

Phys. Rev. D92:023529, 2015

C. El Aisati, M. Gustafsson and T. Hambye, Phys. Rev. D92:123515, 2015

Low energies (MESE), fixing astro index

M. Chianese, G. Miele and S. Morisi, JCAP 1701:007, 2017

DARK MATTER DECAYS (+ASTRO)

several energy spectrum analyses

Low energies: DM+astro (index=2)

A. Bhattacharya, M. H. Reno and I. Sarcevic, JHEP 1406:110, 2014 C. Rott, K. Kohri and S. C. Park, See also: C. S. Fong et al., JHEP 1502:189, 2015

limits on monochromatic decays

Phys. Rev. D92:023529, 2015

C. El Aisati, M. Gustafsson and T. Hambye, Phys. Rev. D92:123515, 2015

HESE 6-yr, fixing astro index

M. Chianese, G. Miele and S. Morisi, Phys. Lett. B773:591, 2017

DARK MATTER DECAYS (+ASTRO)

several energy spectrum analyses

Low energies: DM+astro (index=2)

A. Bhattacharya, M. H. Reno and I. Sarcevic, JHEP 1406:110, 2014 C. Rott, K. Kohri and S. C. Park, See also: C. S. Fong et al., JHEP 1502:189, 2015

limits on monochromatic decays

Phys. Rev. D92:023529, 2015

C. El Aisati, M. Gustafsson and T. Hambye, Phys. Rev. D92:123515, 2015

HESE 6-yr, fixing astro index

M. Chianese, G. Miele and S. Morisi, Phys. Lett. B773:591, 2017

HESE 7.5-yr, adding TG priors

M. Chianese et al., JCAP 11:046, 2019

See also: Y. Suí and P. B. Dev, JCAP 07:020, 2018

DARK MATTER DECAYS: GAMMA-RAY BOUNDS

The neutrino spectrum from DM decays is accompanied by a gamma-ray spectrum

However, at energies E > 10-100 TeV, the Universe is opaque to gamma-rays due to the interaction with the background radiation field (IR or CMB):

gamma-rays produce e[±] pairs, which produce further gamma-rays via inverse Compton onto CMB photons, until the energies fall below ~100 GeV

different absorption for extragalactic and galactic signals

It may seem to be OK....

A. Esmaili and P. D. Serpico, JCAP 1510:014, 2015

See also: M. Cirelli et al., Phys. Rev. D86:083506, 2012

K. Murase and J. F. Beacom, JCAP 1201:043, 2012

K. Murase et al., Phys. Rev. Lett. 115:071301, 2015

C. Blanco, J. P. Harding and D. Hooper, JCAP 04:060, 2018

K. Ishiwata et al., JCAP 01:003, 2020

Sergio Palomares-Ruiz

DARK MATTER DECAYS: GAMMA-RAY BOUNDS

The neutrino spectrum from DM decays is accompanied by a gamma-ray spectrum

However, at energies E > 10-100 TeV, the Universe is opaque to gamma-rays due to the interaction with the background radiation field (IR or CMB):

gamma-rays produce e^{\pm} pairs, which produce further gamma-rays via inverse Compton onto CMB photons, until the energies fall below ~100 GeV

different absorption for extragalactic and galactic signals

It may seem to be OK

A. Esmaili and P. D. Serpico, JCAP 1510:014, 2015

See also: M. Círellí et al., Phys. Rev. D86:083506, 2012

K. Murase and J. F. Beacom, JCAP 1201:043, 2012

K. Murase et al., Phys. Rev. Lett. 115:071301, 2015

C. Blanco, J. P. Harding and D. Hooper, JCAP 04:060, 2018

K. Ishiwata et al., JCAP 01:003, 2020

Sergio Palomares-Ruiz

...but tension for some channels....

T. Cohen et al., Phys. Rev. Lett. 119:021102, 2017

DARK MATTER DECAYS: GAMMA-RAY BOUNDS

The neutrino spectrum from DM decays is accompanied by a gamma-ray spectrum

However, at energies E > 10-100 TeV, the Universe is opaque to gamma-rays due to the interaction with the background radiation field (IR or CMB):

gamma-rays produce e^{\pm} pairs, which produce further gamma-rays via inverse Compton onto CMB photons, until the energies fall below ~100 GeV

different absorption for extragalactic and galactic signals

It may seem to be OK

A. Esmaili and P. D. Serpico, JCAP 1510:014, 2015

See also: M. Cirelli et al., Phys. Rev. D86:083506, 2012

K. Murase and J. F. Beacom, JCAP 1201:043, 2012

K. Murase et al., Phys. Rev. Lett. 115:071301, 2015

C. Blanco, J. P. Harding and D. Hooper, JCAP 04:060, 2018

K. Ishiwata et al., JCAP 01:003, 2020

Sergio Palomares-Ruiz

...but tension for some channels....

T. Cohen et al., Phys. Rev. Lett. 119:021102, 2017

high-galactic latitude counterparts?

A. Neronov, M. Kachelriess and D. V. Semikoz,

Phys. Rev. D98:023004, 2018

Probing heavy DM with IC HESE data

DM DECAYS + ASTRO: 4-YR HESE ANALYSIS

short lifetimes X (problem with gamma-rays)

longer lifetimes 🗸

relatively hard astro spectrum v

very soft astro

Data
Total best fit [60 TeV - 10 PeV]

DM \rightarrow W* W: τ_{28} (4860) = 1.4

astro v: Φ_{astro} = 2.5 (E/100 TeV) 3.66

atm. μ best fit [60 TeV - 10 PeV]

Total IC best fit [60 TeV - 10 PeV]

Total IC best fit [60 TeV - 3 PeV]

Deposited EM-Equivalent Energy in Detector [TeV]

A. Bhattacharya, A. Esmaílí, SPR and I. Sarcevíc, JCAP 07:027, 2017

TITUT DE FÍSICA Sergio Palomares-Ruiz

Probing heavy DM with IC HESE data

DM DECAYS + ASTRO: 4-YR HESE ANALYSIS

A. Bhattacharya, A. Esmaílí, SPR and I. Sarcevíc, JCAP 07:027, 2017

INSTITUT DE FÍSICA Sergio Palomares-Ruiz 10 Probing heavy DM with IC HESE data

DM DECAYS + ASTRO: 4-YR HESE ANALYSIS

Decay channel	$N_{ m DM}(au_{ m DM}[10^{28}{ m s}])$	$m_{\rm DM} \ [{ m TeV}]$	$N_{ m astro}(\phi_{ m astro})$	γ
uar u	10.2 (0.021)	522	16.6 (1.2)	2.42
$bar{b}$	12.9 (0.089)	1066	13.8 (0.83)	2.32
$tar{t}$	16.1 (0.58)	11134	10.7 (1.9)	3.91
W^+W^-	11.3 (1.4)	4860	15.5 (2.5)	3.66
ZZ	10.5 (1.6)	4800	16.3 (2.6)	3.61
h h	13.6 (0.17)	606	$13.2 \ (0.76)$	2.29
e^+e^-	5.0 (1.2)	4116	21.9 (3.2)	3.33
$\mu^+\mu^-$	6.3 (5.0)	6437	20.7(3.2)	3.46
$\tau^+ \tau^-$	7.6 (4.4)	6749	19.3 (3.0)	3.53
$ u_e ar{ u}_e$	3.7(2.6)	4041	22.7(3.2)	3.24
$ u_{\mu}ar{ u}_{\mu}$	6.4(2.4)	4133	20.6 (3.2)	3.48
$ u_{ au}ar{ u}_{ au}$	6.7(2.3)	4117	20.1 (3.1)	3.50

A. Bhattacharya, A. Esmaílí, SPR and I. Sarcevíc, JCAP 07:027, 2017

DM DECAYS + ASTRO: 4-YR HESE ANALYSIS See also: A. Esmailí, A. Ibarra and O. L. G. Peres, JCAP 1211:034, 2012

Neutrino limits are better than gamma-ray ones for relatively hard channels

GAMMA-RAY LIMITS

A. Bhattacharya, A. Esmaílí, SPR and I. Sarcevíc, JCAP 07:027, 2017

DM DECAYS + ASTRO: 6-YR HESE ANALYSIS

DM DECAYS + ASTRO: 6-YR HESE ANALYSIS

A. Bhattacharya, A. Esmaili, SPR and I. Sarcevic, JCAP 05:051, 2019

DM DECAYS + ASTRO: 6-YR HESE ANALYSIS Best fit: Astro (hard) + DM -> W*W*

Decay channel	$ au_{ m DM}[10^{28}]$	8 s] $(N_{\rm DM})$	$m_{\rm DM} \ [{ m TeV}]$	$\phi_{ m astro} \ (N_{ m astro})$	γ
$u\bar{u}$	0.11	(28.4)	1761	0.52 (13.0)	2.34
$b\bar{b}$	0.07	(26.9)	1103	0.58 (14.3)	2.35
$t\overline{t}$	0.11	(28.7)	598	0.45 (12.5)	2.27
W^+W^-	0.37	(28.5)	412	0.47 (12.6)	2.29
ZZ	0.43	(27.8)	407	0.52 (13.3)	2.32
hh	0.12	(28.8)	611	0.45 (12.6)	2.27
e^+e^-	2.20	(4.0)	4160	3.53 (37.3)	3.36
$\mu^+\mu^-$	9.77	(4.9)	6583	3.51 (36.5)	3.39
$\tau^+\tau^-$	0.89	(27.4)	472	0.59 (14.3)	2.36
$ u_e \bar{ u}_e$	4.12	(3.6)	4062	3.52 (37.7)	3.33
$ u_{\mu}ar{ u}_{\mu}$	4.63	(5.0)	4196	3.52 (36.4)	3.41
$ u_{ au}ar{ u}_{ au}$	0.96	(16.6)	341	1.58 (24.9)	2.74

A. Bhattacharya, A. Esmaili, SPR and I. Sarcevic, JCAP 05:051, 2019

Comparison to 4-yr HESE

DM DECAYS + ASTRO: 6-YR HESE ANALYSIS

Very similar limits to 4-yr HESE

GAMMA-RAY LIMITS

A. Bhattacharya, A. Esmailí, SPR and I. Sarcevic, JCAP 05:051, 2019

ONLY DM DECAYS: HESE ANALYSIS

Only DM? Two decay channels

4-47

DM \rightarrow $\{92\% u\bar{u}; 8\% v_e \bar{v}_e\}$

A. Bhattacharya, A. Esmaili, SPR and I. Sarcevic, JCAP 07:027, 2017

but too much contribution from soft channels?

6-yr

DM \rightarrow $\{97\% u\bar{u}; 3\% v_e \bar{v}_e\}$

A. Bhattacharya, A. Esmaílí, SPR and I. Sarcevíc, JCAP 05:051, 2019

NEUTRINOS FROM DARK MATTER ANNIHILATIONS

GALACTIC **EXTRA-GALACTIC** Averaged Two $=\sum_{\alpha} P_{\beta\alpha} \left[\frac{d\Phi_{G,V_{\alpha}}}{dE} + \frac{d\Phi_{EG,V_{\alpha}}}{dE} \right]$ Particle physics Astrophysics $\frac{\rho^2 \, ds}{dE_{\nu}} = \frac{(\Omega_{DM} \rho_c)^2}{4\pi} \frac{\langle \sigma v \rangle}{2 \, m_{DM}^2} \int \frac{dz}{H(z)} \xi^2(z) \frac{dN_{\nu_{\alpha}}[(1+z)E_{\nu}]}{dE_{\nu}}$ flux DM galactic density Hubble function energy redshift annihilation neutrino flux energy redshift cross section at production

NEUTRINOS FROM DARK MATTER ANNIHILATIONS

Two

Averaged oscillations
$$\frac{d\Phi_{\nu_{\beta}}}{\partial P_{\beta}} = \sum_{\beta} P_{\beta}$$

GALACTIC

EXTRA-GALACTIC

$$\frac{d\Phi_{\nu_{\beta}}}{dE_{\nu}} = \sum_{\alpha} P_{\beta\alpha} \left[\frac{d\Phi_{G,\nu_{\alpha}}}{dE_{\nu}} + \frac{d\Phi_{EG,\nu_{\alpha}}}{dE_{\nu}} \right]$$

$$+\frac{d\Phi_{EG,V_{\alpha}}}{dE_{v}}$$

$$\frac{d\Phi_{G,\nu_{\alpha}}}{dE_{\nu}} = \underbrace{\frac{1}{4\pi}\frac{\langle\sigma\nu\rangle}{2\,m_{\rm DM}^2}\frac{dN_{\nu_{\alpha}}}{dE_{\nu}}}_{\text{los}} \underbrace{\int_{\text{los}}^{2}ds}_{\text{los}} \underbrace{\frac{d\Phi_{EG,\nu_{\alpha}}}{dE_{\nu}}}_{\text{los}} = \underbrace{\frac{(\Omega_{\rm DM}\rho_{c})^2}{2\,m_{\rm DM}^2}}_{\text{halo enhancement}} \underbrace{\int_{\text{halo enhancement}}^{d}dE_{\nu}}_{\text{halo enhancement}}$$
 annihilation cross section DM mass at production density at production density

$$=\frac{(\Omega_{\rm DM}\rho_c)^2}{4\pi}\frac{\langle\sigma v\rangle}{2\,m_{\rm DM}^2}\int\frac{dz}{H(z)}\xi^2(z)\frac{dN_{\nu_\alpha}[(1+z)E_\nu]}{dE_\nu}$$
 M density halo enhancement

Rate ~
$$V N_N \sigma_N L_{MW} \frac{\rho_{DM}^2}{2m_{DM}^2} \langle \sigma v \rangle \sim 10/year \rightarrow \left(\frac{\langle \sigma v \rangle}{10^{-22} cm^3/s}\right) \left(\frac{1 PeV}{m_{DM}}\right)^2 \sim 1$$

Very large annihilation cross section (above the unitarity limit)

DM ANNIHILATIONS + ASTRO: 6-YR HESE ANALYSIS

$\overline{\mathtt{DM}}\,\mathtt{DM} o \mathtt{W}^+\mathtt{W}^-$

DM ANNIHILATIONS + ASTRO: 6-YR HESE ANALYSIS

Ann. channel	$\langle \sigma v \rangle_{22}$	$m_{\rm DM} \ [{ m TeV}]$	ξ	$\phi_{ m astro}$	γ	$N_{ m DM,G}^{ m ann}$	$N_{ m DM,EG}^{ m ann}$	$N_{ m astro}$
$u\bar{u}$	52.24	260	0.001	1.02	2.52	20.6	0.0	20.2
$bar{b}$	24.10	491	0.001	0.81	2.45	23.2	0.0	17.3
$t\bar{t}$	8.20	270	0.001	0.69	2.40	24.8	0.0	15.8
W^+W^-	1.51	178	0.001	0.87	2.48	22.5	0.0	18.1
ZZ	1.27	177	0.001	0.91	2.50	22.2	0.0	18.4
hh	7.46	278	0.001	0.69	2.40	24.9	0.0	15.8
e^+e^-	1.03	159	0.635	1.65	2.75	13.5	1.3	25.8
$\mu^+\mu^-$	0.63	205	0.001	0.71	2.41	24.6	0.0	15.9
$\tau^+\tau^-$	0.96	218	0.001	0.66	2.39	25.5	0.0	15.4
$ u_e \bar{ u}_e$	0.33	158	3.388	1.67	2.76	10.8	3.8	26.0
$ u_{\mu}ar{ u}_{\mu}$	0.70	159	1.791	0.96	2.52	19.0	3.1	18.9
$ u_{ au}ar{ u}_{ au}$	0.70	159	1.945	0.96	2.52	18.8	3.4	18.9

A. Bhattacharya, A. Esmaili, SPR and I. Sarcevic, JCAP 05:051, 2019

DM ANNIHILATIONS + ASTRO: 6-YR HESE ANALYSIS

Ann. channel	$\langle \sigma v \rangle_{22}$	$m_{\rm DM} \ [{ m TeV}]$	ξ	$\phi_{ m astro}$	γ	$N_{ m DM,G}^{ m ann}$	$N_{ m DM,EG}^{ m ann}$	$N_{ m astro}$
$u\bar{u}$	52.24	260	0.001	1.02	2.52	20.6	0.0	20.2
$bar{b}$	24.10	491	0.001	0.81	2.45	23.2	0.0	17.3
$t\bar{t}$	8.20	270	0.001	0.69	2.40	24.8	0.0	15.8
W^+W^-	1.51	178	0.001	0.87	2.48	22.5	0.0	18.1
ZZ	1.27	177	0.001	0.91	2.50	22.2	0.0	18.4
hh	7.46	278	0.001	0.69	2.40	24.9	0.0	15.8
e^+e^-	1.03	159	0.635	1.65	2.75	13.5	1.3	25.8
$\mu^+\mu^-$	0.63	205	0.001	0.71	2.41	24.6	0.0	15.9
$\tau^+\tau^-$	0.96	218	0.001	0.66	2.39	25.5	0.0	15.4
$ u_e ar{ u}_e$	0.33	158	3.388	1.67	2.76	10.8	3.8	26.0
$ u_{\mu}ar{ u}_{\mu}$	0.70	159	1.791	0.96	2.52	19.0	3.1	18.9
$ u_{ au}ar{ u}_{ au}$	0.70	159	1.945	0.96	2.52	18.8	3.4	18.9

If only DM → ExGal needed, larger mass, hard-soft channels

A. Bhattacharya, A. Esmaili, SPR and I. Sarcevic, JCAP 05:051, 2019

 $N_{
m DM}^{
m tot}$

DM BOUNDS USING THE LATEST HESE DATA

7.5-yr HESE (modified selection cuts, non-public yet)

C. A. Argüelles and H. Dujmovic [IceCube Collaboration], PoS(ICRC2019)839, 2020

Similar limits to 6-yr HESE

CONCLUSIONS

In addition to be produced by standard mechanisms, high-energy neutrinos could be produced by DM decays/annihilations

IC data is compatible with a contribution from DM decays (annihilations?)

DM decays could explain the ~100 TeV HESE data

hard astrophysical spectrum could explain higher energy events (in agreement with through-going muon data)

Neutrino data set the strongest limits on the DM Lifetime for hard channels (m > 100 TeV)

