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Axion dark matter search in IBS/CAPP

CAPP-MC

CAPP-12TB

CAPP-PACE

CAPP-8TB

CAPP : Center for Axion and Precision Physics at Institute for Basic Science (IBS) in Daejeon, South Korea

Four axion search experiments running in a variety of mass range

Low Vibration Pad in CAPP
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CAPP-8TB axion haloscope

8TB stands for 8 T magnetic field, relatively Big magnet bore size

CAPP-8TB : Axion dark matter search in IBS/CAPP

• Phys. Rev. Lett.  124, 101802 (2020) : 6.62 < ma < 6.82 μeV (1.6 – 1.65 GHz) 
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Strong CP problem

• CP violation in QCD by introducing θ − vacuum
• Neutron EDM in QCD and θ

• |dn| < 1.8 X 10-26 e.cm [1] from the recent measurement

• Corresponding to θ < O 10−9 why should it be so small?

• Resolution of the strong CP problem

• A global chiral U(1) symmetry, or U(1)PQ symmetry [2]

Axion
• Result of spontaneous breaking of U(1)PQ symmetry 

• Invisible axion

• KSVZ and DFSZ model

• Long life-time, very light and long-lived

• A promising candidate for cold dark matter (1μeV to 3 meV)

• Sikivie effect [3]

• Resonant conversion of axion (a) to photon (γ) in a microwave cavity 

in a static magnetic field (B0)

[1] Phys. Rev. Lett, 124, 081803 (2020)

[2] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

[3] P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. D 32, 2988 (1985).

4 / 18



Axion haloscope
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𝑔𝑎𝛾𝛾 : Axion-photon coupling strength

𝜌𝑎 : Local dark matter density

𝑈𝑀 =
1

2𝜇0
𝑑𝑉 𝐵

2
= 𝐵𝑎𝑣𝑔

2 𝑉 : Magnetic field energy in the 

resonator

(𝐵 ∶ Static magnetic field, 𝑉 : resonator volume)

𝐶 : Form factor

𝑄𝐿 ∶ Loaded Quality factor of the resonator

𝛽 ∶ Resonator mode coupling to the load (antenna)

Axion to photon conversion power Pa picked up 
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avity re

so
n
ato

r

a

𝜸

B0
5 / 18



Axion haloscope
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Signal-to-noise ratio (SNR)
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Spectrum 

Analyzer

TA

Tcavity

𝑇𝑛 = 𝑇𝐴 + 𝑇𝑐𝑎𝑣𝑖𝑡𝑦

System noise

Tn : System noise temperature

TA : Equivalent noise temperature of the amplifier

Tcavity : Thermal noise from the resonator

Amplifier

Pn ,  σPn : noise powe, fluctuations of noise power

kB : Boltzmann’s constant

Δ𝜈𝑎 : Axion signal window

N : number of spectra averaged
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Microwave cavity resonator

• Cavity : OFHC copper,134 mm diameter, 246 mm height

• V = 3.47 Liters

• TM010 mode: maximum C factor among the cavity modes

𝑓010 =
𝑐

2𝜋 𝜇𝑟𝜖𝑟

𝑋01
𝑅

~
0.1147

𝑅
GHz = 1.712 [GHz]

• Q factor at low temperature  ~ 110,000 

• Split design : minimizing the heat from the eddy current

B = 8 T

MXC plate
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Frequency tuning

• Dielectric tuning rod (Al2O3)

• Frequency range of Quasi-TM010 mode = 1.43 – 1.7 GHz

• No mode crossing throughout the range

• Stepper motor at room temperature

• CFRP (carbon fiber) tube 
• All the way from the motor to the cavity

• Frequency tuning tolerance = ± 500 Hz
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Locomotive shaft

CFRP tube

To the stepper motor
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Magnetic field & form factor

𝐶𝑙𝑚𝑛 =
𝑉 𝑑𝑉𝐸𝑙𝑚𝑛 ∙ 𝐵𝑒𝑥𝑡

2

𝐵𝑎𝑣𝑔
2 𝑉 𝑉 𝑑𝑉 𝜖 𝐸𝑙𝑚𝑛

2

𝐸 : Electric field of the cavity mode

𝐵𝑒𝑥𝑡 : External static magnetic field

𝑙, 𝑚, 𝑛 : cavity mode number

Bavg : Volume average of external B field

V : cavity volume

𝜖 : relative dielectric constant

magnet

cavity

Bavg = 7.3 T

• Form factor : alignment between mode E field and external B field

• Calculated with E field profile from EM wave simulation (COMSOL)

• TM010 mode, uniform B field with perfect alignment  =  0.69 

• C factor of QTM010 modes : frequency dependent < 0.69

• Asymmetry in electric field due to dielectric tuning rod

• Uniformity of B field 

• Solenoid magnet : superconducting (NbTi) wire

• With compensation coil : few hundred Gauss near MXC plate

• Maximum B field = 8 T

• Volume average in cavity = 7.3 T

MXC plate
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Q factor & antenna coupling

Typical smith circles of cavity reflection

Coupling tuning during the physics run

𝑄 =
𝜈𝑐
Δ𝜈𝑐

, 𝛽 ≡
𝑄0
𝑄𝑒𝑥𝑡

, 𝑄𝐿 =
𝑄0

𝛽 + 1

𝜈𝑐 : resonance frequency

Δ𝜈𝑐 : FWHM of cavity transmission signal

𝛽 : antenna coupling

𝑄0, 𝑄𝐿 : Unloaded and loaded Q factor

𝑄𝑒𝑥𝑡 : antenna Q factor

• Antenna coupling measurement from smith chart*

• Scan rate = Δ𝜈𝑐 / 𝜏
• Δ𝜈𝑐 = loaded cavity bandwidth, 𝜏 = integration time 

• 𝛽 = 2 is optimum for the scan rate

• Tuning the antenna coupling

• Linear stepper motor

• Increase/decrease the depth of antenna in cavity

• Tuning tolerance :  𝛽 = [1.8,  2.0]

(d = diameter of smith circle)𝛽 =
𝑑

2 − 𝑑
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* D. Kajfez and E. J. Hwan,, IEEE Trans. Microw. Theory Tech. MTT-32 (1984) 666.
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Receiver chain

• First and second amplifier : HEMT at 1 K, 4 K stage

• Typical effective noise temperature of the first amplfier < 1 K

• Total system gain ~ 132 dB
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Noise power spectrum

Data
Baseline fit

𝑃 Δ = 𝑘𝐵Δ𝜈𝑏𝐺
a1 + 8𝑎3

Δ − 𝑎5
𝑎2

2

+ 4𝑎4
Δ − 𝑎5
𝑎2

1 + 4
Δ − 𝑎5
𝑎2

2

𝑘𝐵 : Boltzmann’s constant

𝛥𝜈𝑏 : Resolution bandwidth

𝐺 : Total system gain

𝛥 : Frequency offset from the spectrum center

𝑎1~𝑎5: Fit parameters

• Noise analysis from the equivalent circuit*

*S. Asztalos et al., Large-scale microwave cavity search for dark-matter axions, Phys. Rev. D 64 (2001) 092003
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Noise & gain measurements

• Cavity as a noise source

• Noise power measurements at different cavity temperatures

(50 mK, 200 mK)

𝐺 =
𝑃ℎ − 𝑃𝑐

𝑘𝐵Δ𝜈𝑏 𝑇ℎ − 𝑇𝑐
Pc, Ph : on-resonance power measured at cold/hot temperatures

Tc,Th : hot/cold cavity temperature

• Total system gain = 132 ~ 135 dB

• Noise from obtained system gain = 0.75 ~ 1.2 K
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Scan parameter

• Target sensitivity = 𝟒 × 𝒈𝒂𝜸𝜸
𝑲𝑺𝑽𝒁 (~ QCD upper band)

• Target SNR = 5

• RBW = 20 Hz

• Optimized for DAQ efficiency (~ 46 %)

• Span = 60.48 kHz, 3025 points per spectrum
• Bin merged to RBW = 500 Hz in analysis

• Resultantly 60 kHz span, 121 points

• Frequency tuning step = 20 kHz
• Number of spectra to overlap = 3 (optimized for SNR )

• Number of spectra for a step = 12,000

• 400 average X 30 
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Analysis
Removing baseline Data

Baseline fit

• Merging 5 bins, RBW = 20 Hz → 100 Hz

• 5-parameters fit

• Filtering spurious peaks (> 4.5 σ)

• Merging 5 bins again, RBW = 100 Hz → 500 Hz

• Pull distribution

𝑃𝑢𝑙𝑙 =
𝐷𝐴𝑇𝐴 −𝑀𝑂𝐷𝐸𝐿

𝑈𝑁𝐶𝐸𝑅𝑇𝐴𝐼𝑁𝑇𝑌

• Heavily averaged (12,000) spectra : Gaussian statistics

• In each frequency bins,

• Mean = 𝑘𝐵Δ𝜈𝑏𝑇, Standard deviation = 𝑘𝐵Δ𝜈𝑏𝑇 / 𝑁
(T : effective noise temperature, N = number of averaged spectra)

• Pull becomes the standard normal distribution ( mean = 0, width = unity)
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Analysis

Vertical average (overlapping)
• 3 overlapped bins (span = 60 kHz, step = 20 kHz)

• Average with inverse variance weighting (maximum likelihood estimate)
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Horizontal co-adding*

• Weighted sum of neighboring bins, weighting factor = axion signal shape

• 10 neighboring bins ( 500 Hz X 10 = 5000 Hz)

• Containing 99.9 % axion signal power (1.6 – 1.65 GHz mass of axion)

• Grand spectrum : Gaussian statistics

• Correlation correction  (due to baseline fit)

9
9
.9

%

* B. M. Brubaker, L. Zhong, S. K. Lamoreaux, K.W. Lehnert, and K. A. van Bibber, Phys. Rev. D 96, 123008 (2017).

Axion signal shape
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Histogram of normalized grand power spectra

Rescan
• 3.718 σ threshold corresponding to 90 % upper exclusion limit of axion

to photon conversion sensitivity

• 36 candidates

• rescan with larger number of average
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Result & future plan

• Setting upper limit on gaγγ at 90 % C.L.

• Reached sensitivity down to QCD axion band in 6.62 < ma < 6.82 μeV

• Most sensitive at this particular mass range to date

• Scan 6.20 – 6.62 μeV (1.5 – 1.6 GHz) for CAPP-8TB phase 2 is under preparation 
17 / 18



Future in CAPP
CAPP-MC

High mass axion search 

with multiple-cell (Pizza) 

cavity
CAPP-12TB

KSVZ / DFSZ sensitivity with

large cavity & 12 T magnetic field

CAPP-PACE

Quantum-limited noise with JPA

Superconducting cavity

CAPP-8TB

Extended search

ongoing

STAY TUNED!

Low Vibration Pad in CAPP
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Correlation correction

• Standard deviation of Grand spectrum

• σ = 0.93 < 1

• Fitting induced negative correlations

between co-adding bins

• Signal power degradation ~ 84 %

• 5,000 (X 2501 steps) simulated experiment using 

the baseline fit result

• Incorporating the correlation

• Width = unity

• Signal power efficiency 84 % → 90 %

Simulation

Correlation correction


