

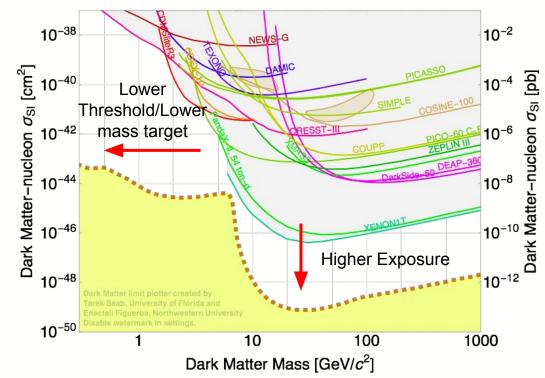
NEWS-G: Search for Light Dark Matter with a Spherical Proportional Counter

P. Knights^{1,2}, K. Nikolopoulos¹, M.-C. Piro³

On behalf of the NEWS-G collaboration

¹University of Birmingham, UK ²IRFU, CEA Saclay, France

³University of Alberta, Canada


ALBERTA

Gaseous Detectors

news-a

Direct Detection Landscape

- Plethora of evidence for Dark Matter
- Absence of conclusive evidence in WIMP-preferred region
 - Lee-Weinberg Limit, ~2 GeV/c², to ~1 TeV/c²
- Much weaker constraints
 0.1-10 GeV/c² mass range
 - Region has attracted theoretical interest

P Knights, NEWS-G, ICHEP 2020

Light DM Detection

Light DM relatively unexplored

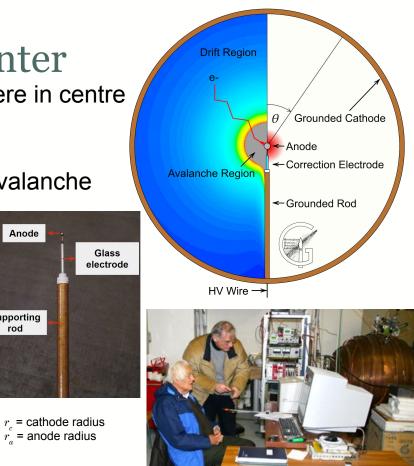
- m_{χ} $v_0\sim 230$ km/s m_T $E_R \sim \mathcal{O}(\mathrm{keV})$ Requirements: Low mass target; Low energy threshold; Favourable quenching factor
- 10 1.0 keV⁻¹] 5_{SI}/10⁻³⁹ cm² dR/dE_R [kg⁻¹ day⁻¹ keV⁻¹] m_v=10 GeV/c² GeV/c² m,=1 --- He --- He 10 --- Si day⁻¹ | --- Si 0.8 10^{3} -- Ge -- Ge ... Ar Quenching Factor 10 -Xe [kg⁻¹ 10^{2} 0.6 10² cm² dR/dE_R Si⁺ in Si 0.4 lonisation 10 10 σ_{SI}/10 10 0.2 10⁻³ 0.0 10 10^{-3} 10^{-2} 10⁻³ 10^{-2} 2 8 10 10^{-1} 10^{-1} 0 10 10 Energy [keV] E_{R} not including quenching factor E_{R} [keV] E_R [keV] SRIM quenching factors for gases UNIVERSITY^{OF} TU - CEA Saclay 29/07/2020

Spherical Proportional Counter

- $\emptyset O(0.1-1 \text{ m})$ sphere with $\emptyset O(1 \text{ mm})$ sphere in centre
- Voltage applied to inner sphere anode
- At first order, E~1/r²
 - Naturally divides detector into drift and avalanche region Anode
- Construction with radiopure materials
- Lowest surface-area to volume ratio
- Size independent capacitance
 - Large volume with low noise

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

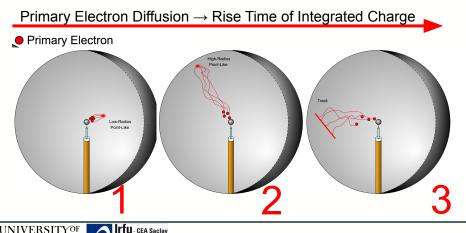
$$C = 4\piarepsilon_0rac{r_cr_a}{r_c-r_a}pprox 4\piarepsilon_0r_a\sim 1\mathrm{pF}$$

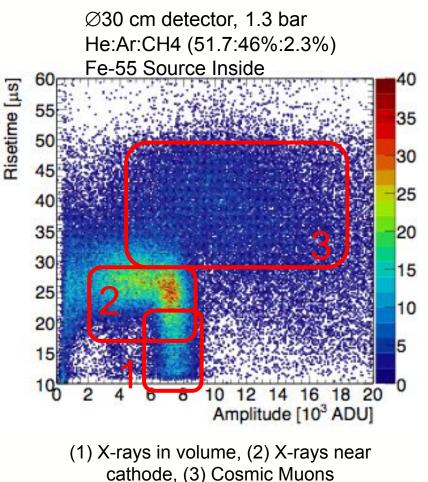

I.Giomataris et al. JINST. 2008. P09007 Katsioulas et al. JINST. 13. 2018. no.11. P11006

P Knights, NEWS-G, ICHEP 2020

Supporting

rod


I. Giomataris and G. Charpak in CEA Saclay (sphere was previously a LEP RF cavity)


Pulse-Shape Discrimination

- Rise time selections to:
 - Distinguish point-like versus extended ionisations
 - Fiducialise detector

BIRMINGHAM

- Majority of background from cathode material
- Can select against near-cathode events

Applications

- Well suited for direct Dark Matter search
 Variable gas target and pressure

 Kinematically matched to light DM
 Single channel read-out
 Potential TPC-like mode with more channels
- Implemented by NEWS-G Collaboration
- Many other exciting physics applications!
 Fast neutron spectroscopy <u>Talk: 29/07 15:30, I. Katsioulas</u>
 Neutrinoless double beta decay detection <u>Talk: 30/07 13:00, A. Meregaglia</u>
 - Supernova detection

Astroparticle Physics 97 (2018) 54–62 Contents lists available at ScienceDirect

FLSEVIER

Physics Letters B 634 (2006) 23-29

www.elsevier.com/locate/physletb

A network of neutral current spherical TPCs for dedicated supernova detection

Y. Giomataris^a, J.D. Vergados^{b,*}

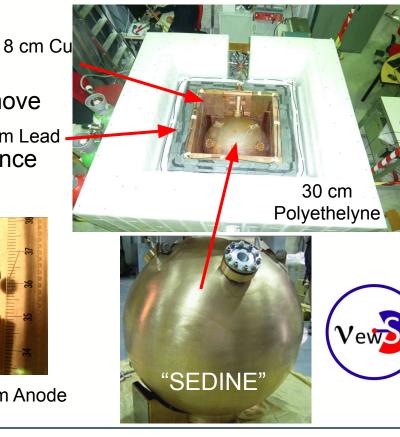
^a CEA, Saclay, DAPNIA, Gif-sur-Yvette cedes, France ^b University of Ioannina, GR-45110 Ioannina, Greece Received 22 August 2005; received in revised form 9 November 2005; accepted 10 January 2006

New Experiments With Spheres-Gas: **NEWS-G** Collaboration

UNIVERSITYOF

💿 BIRMINGHAM 🎽

CEA Saclay Institut de recherche sur les lois fondamentales


Vew

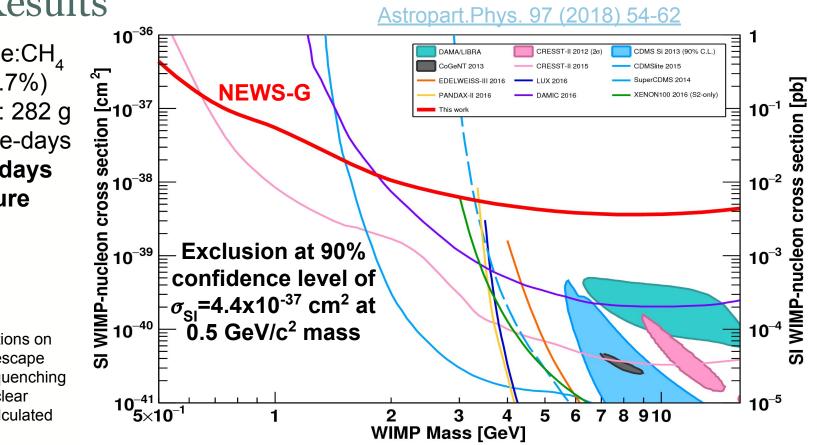
SEDINE - First NEWS-G DM Detector

- \emptyset 60 cm spherical proportional counter
- Using Aurubis NOSV Copper
- Several stages of chemical cleaning to remove Rn deposits 15 cm Lead
- Located in Modane Underground Lab., France

Laboratoire Souterrain de Modane (LSM)

First Results

- Gas: Ne:CH₄ (99.3:0.7%)
 3.1 bar: 282 g
- 34.1 live-days
 9.6 kg/days
 exposure

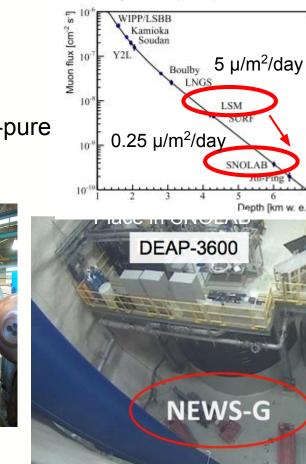

Standard assumptions on WIMP velocities, escape velocity and with quenching factor of Neon nuclear recoils in Neon calculated from SRIM

TU - CEA Saclay

Institut de recherche sur les lois fondamentales

UNIVERSITYOF

回 BIRMINGHAM 🍃


J.Phys. G43 (2016) no.1, 013001

NEWS-G at SNOLAB

- Next stage of NEWS-G
- Ø130 cm detector Bigger
- 4N (99.99% pure) Aurubis copper More radio-pure ~7-25 μBq/kg Th and ~1-5 μBq/kg U
- Operated in both LSM and SNOLAB

r les lois fondamentales

P Knights, NEWS-G, ICHEP 2020

Spinning

29/07/2020

Background Contributions in Copper

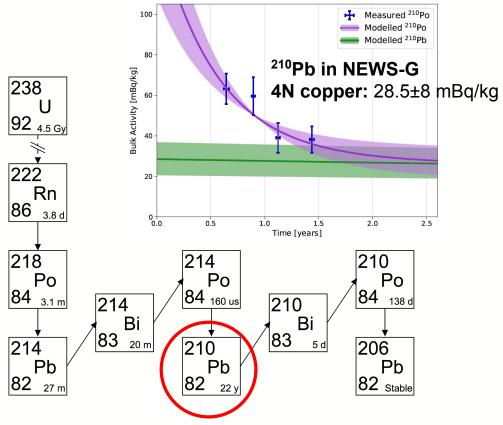
- ⁶³Cu(n,α)⁶⁰Co by fast neutrons
 from cosmic muon spallation
- ²³⁸U and ²³²Th decay chain
 - Naturally found and deposited by ²²²Rn

 measured directly by mass spectroscopy

oInfer progeny activities

UNIVERSITYOF

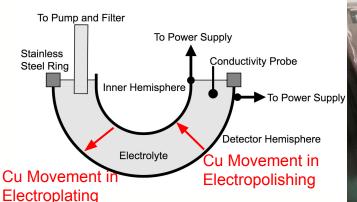
回 BIRMINGHAM 🍃

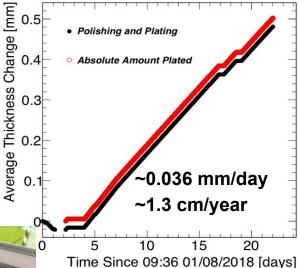


ITU - CEA Saclay

sur les lois fondamentales

Institut de recherche


- Recent development: measure α -particle from ²¹⁰Po decay directly
- ²¹⁰Pb activity inferred from ²¹⁰Po


Electroplating Copper

Reductants		Oxidants	E^0 (V)
$Cu^{2+} + 2e^{-}$	tering .	Cu	+0.34
$Pb^{2+} + 2e^{-}$		Pb	-0.13
$U^{3+} + 3e^-$		U	-1.80
$Th^{4+} + 4e^{-}$		Th	-1.90
$K^{+} + e^{-}$	<u></u>	K	-2.93

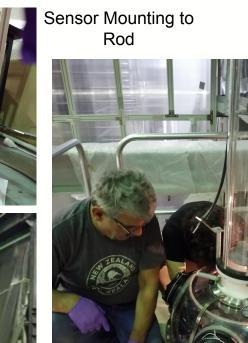
- 'High reduction potential' of copper
- Preferentially deposited in electroplating
- Used to apply 500 µm ultra-pure inner layer
 Reduce background rate below 1 keV by 70%

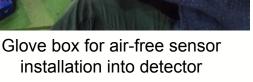
ICP-MS Radio-Assay Results

Sample	Weight [g]	²³² Th [μBq/kg]	²³⁸ U [μBq/kg]
C10100 Cu (Machined)	-	8.7 ± 1.6	27.9 ± 1.9
Cu Electroformed	1.0	< 0.119	< 0.099
Hemisphere 1	0.256	< 0.58	< 0.26
Hemisphere 2	0.614	< 0.24	< 0.11

Paper prepared for submission to NIMA"Background suppression through copper electroplating for the NEWS-G Dark Matter search"

Commissioning In LSM


- Detector installed in LSM
 - 'Dress rehearsal' of
 - Sensor installation with glove box
 - Shielding assembly
 - Acquisition system
- First data taking
 - •135 mbar pure CH₄
 - •1 bar Ne/CH₄



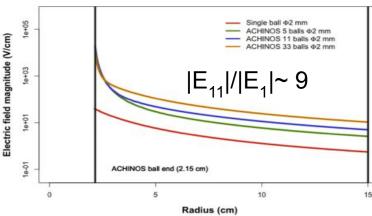
2-Channel Multi-Anode Sensor

Sphere in half the lead shielding

P Knights, NEWS-G, ICHEP 2020

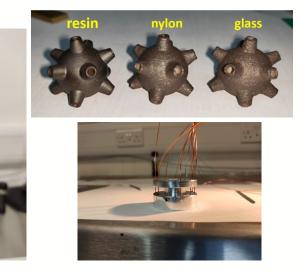
Current Status

- Sphere in SNOLAB
 - Awaiting final chemical cleaning underground
- Platform, shielding and electronics arriving
- Beginning to put pieces together!



Multi-Anode Sensor - ACHINOS

- Anodes located equidistant from centre
- Decouples gain and high-radius E-field
- Use of DLC-coating and 3D printing central electrode
- Future: Multichannel read-out and TPC-like mode



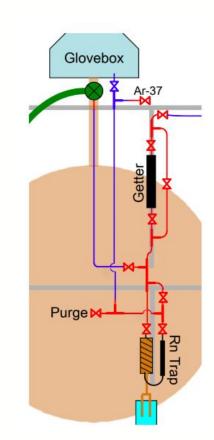
ITU - CEA Saclay

Institut de recherche

- 3D Printing
- High- resistivity DLC-coating
- Smaller (<1 mm) anodes
- Precision assembly tools

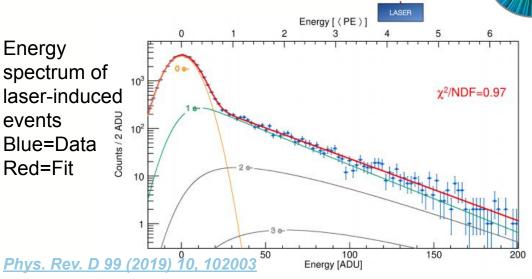
JINST 12 P12031

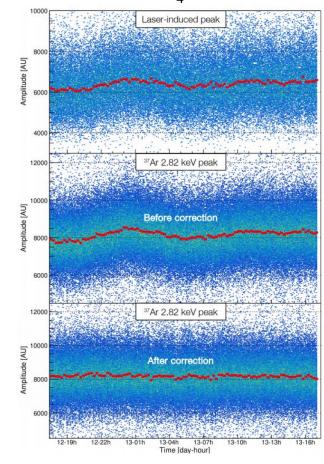
UNIVERSITYOF


💼 BIRMINGHAM 🔀

Gas Purification and Monitoring

- Oxygen and water contamination can cause attachment of primary electrons
 - More of a problem as detector size increases
- Filter gas
 - •Getters are a source of radon
- Use Rn trap in series
 - •Rn trap also remove CH₄
- Various techniques being explored for both filtering stages and online gas quality monitoring in recirculation system
 - Tests ongoing!


Proposed gas handling system for NEWS-G



Ne:CH₄(98:2%)

Laser Calibration

- 213 nm laser directed inside
- Gain monitoring during data taking
- Single-electron response
- •Gas property parameterisation

P Knights, NEWS-G, ICHEP 2020

Scheme of the experimental set-up
Photo Detector

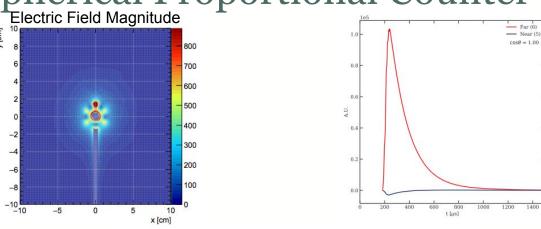
(PD)

Optic

Variable ttenuato

Filter

5" harmonic

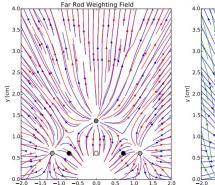

213 nm

Preamplifier

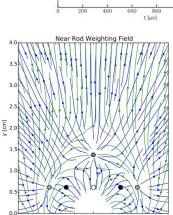
Talk: 31/07 8:40, T. Neep

Simulation of the Spherical Proportional Counter

- Dedicated simulation framework
 - Combined GEANT4 and Garfield++ with FEM simulations (ANSYS)



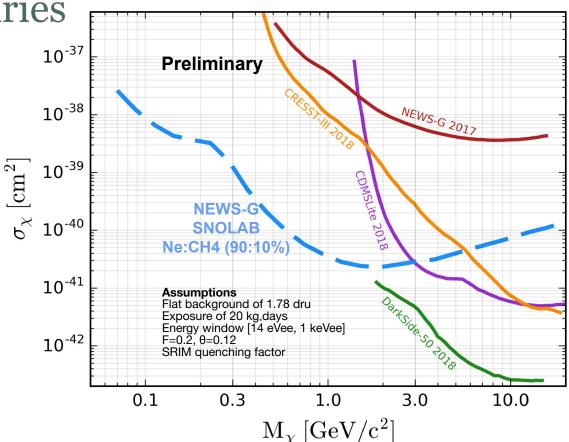
Study detector response •2-channel ACHINOS •³⁷Ar calibration •Fiducialisation


> Institut de recherche sur les lois fondamentales

y [cm]

x [cm]

x [cm]


💿 BIRMINGHAM 🎽

P Knights, NEWS-G, ICHEP 2020

Pushing the Boundaries

To increase low-mass sensitivity:

- Target mass
 - •Larger detector
- Background suppression
 - PID and Fiducialisation
 Sensor R&D
 Dedicated simulation
 - Purity of Materials
 - Electroplating
- Low mass target nuclei
 e.g. H from CH₄

ECUME - Electroformed CUprum Manufacturing Experiment

- Underground electroformed Ø140 cm sphere
 Minimised cosmogenic activation Electroformed in SNOLAB
 No machining or welding grow sphere directly
- Based on what was achieved for current NEWS-G sphere
 0.036 mm/day → ~1 mm/month

Scale hemi-spherical model (PNNL) used for previous electroplating of detector

Current Status:

- R&D bath for prototype at PNNL underway
- Ø30 cm prototype will then be produced
- Full-scale scheduled for late 2021

Summary and Outlook

- NEWS-G is searching for DM in the 0.1-10 GeV mass range First competitive results with gaseous detector in DM search
- Next generation NEWS-G detector currently underground in SNOLAB
 - Larger detector and target mass

2017

SEDINE: First

results

ITU - CEA Saclay

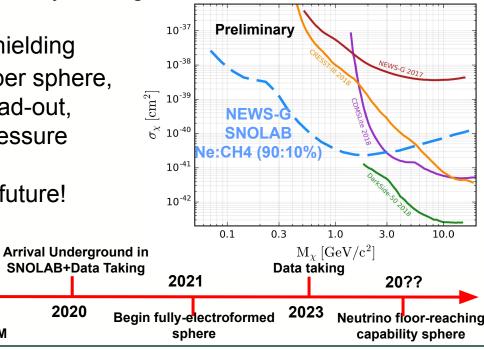
t de recherche

Spherical proportional

counter proposed

2008

BIRMINGHAM 🗾


- Improved procedures, material and shielding
- Active R&D effort: electroforming copper sphere, multi-anode sensors, multi-channel read-out, high-resistivity electrodes, high/low pressure operation...
- Exciting physics opportunities in near future!

Spinning Cu and

electroplating

2018

29/07/2020

2020

2019

Commissioning in LSM

Additional Material

