

A cryogenic direct dark matter search with Nal target

ICHEP 2020 conference Virtual, 30.07.2020

Discussion room (together with J. Schieck (CRESST)): Friday, 31. July 14:30 https://cern.zoom.us/j/94156181934 Florian Reindl, HEPHY & TU Vienna

EXPERIMENTAL CHALLENGES THE DARK MATTER RECOIL SPECTRUM

* Xenon1t: PRL 119, 181301 (2017) ²

THE RELATIVE VELOCITY MODULATES AND SO SHOULD THE INTERACTION RATE

The smoking gun evidence?

DAMA/LIBRA		
Material	250kg of Nal (TI)	
Signal(s)	Light (PMTs)	
Location	LNGS	20-
β/γ-discriminatio	on no	NEN
Taking data	since 1996	THREE
Threshold	1keVee	-SHOLL
Floria	an Reindl	

DAMA/LIBRA MODULATION SIGNAL TIME DISTRIBUTION

DAMA/LIBRA Phase 1 + 2: 2.17 tonne years Statistical significance: 11.9σ

Combined with DAMA/NaI: 2.46 tonne years, 12.9σ

Florian Reindl

DAMA/LIBRA MODULATION SIGNAL ENERGY DISTRIBUTION

Statistics: 12.9 σ \checkmark

Period: 0.999 ± 0.001*

Phase: 25th May +/- 5 days 🗸

(cosine peaking June 2nd)

Convincing non-DM explanation X

*in (2-6)keVee interval

A DARK MATTER SIGNAL?

Statistics: 12.9 σ \checkmark

Period: 0.999 ± 0.001*

Phase: 25th May +/- 5 days (cosine peaking June 2nd)

Convincing non-DM explanation X

(All) other direct DM searches

*in (2-6)keVee interval

COMPARISON TO OTHER EXPERIMENTS

→ Target material dependence → Test DAMA with Nal experiment(s)

CRYOGENIC DETECTOR

Ultimate energy resolution is determined by how well you can measure T against thermodynamic fluctuations

Low temperature Low heat capacity July 30, 2020

CRYOGENIC DETECTOR

Phonon signal (~90 %)

(Almost) independent of particle type

Precise measurement of the deposited energy

SCINTILLATING CALORIMETER

Phonon signal (~90 %)

(Almost) independent of particle type

Precise measurement of the deposited energy

Scintillation light (few %)

Particle-type dependent → LIGHT QUENCHING

SIMULATION

100 KG-DAYS BEFORE CUTS 1KEV NUCLEAR RECOIL THRESHOLD

(1-6)keVee = modulation signal in DAMA

PHYSICS REACH

On the way to Corno Grande (2912m)

RATE VS. MODULATION AMPLITUDE

Felix Kahlhoefer, FR, et al JCAP05(2018)074

Mean rate
$$\overline{R} = \frac{1}{2} [R(t = June 1^{st}) + R(t = Dec. 1^{st})]$$

Modulation Amplitude
$$S = \frac{1}{2} [R(t = June 1^{st}) - R(t = Dec. 1^{st})]$$

RATE VS. MODULATION AMPLITUDE

Felix Kahlhoefer, FR, et al JCAP05(2018)074

Mean rate
$$\overline{R} = \frac{1}{2} [R(t = June 1^{st}) + R(t = Dec. 1^{st})]$$

Modulation Amplitude
$$S = \frac{1}{2} [R(t = June 1^{st}) - R(t = Dec. 1^{st})]$$

Central idea: The modulation amplitude (in a given experiment) cannot exceed the mean rate:

$\overline{R} \geq S$

RESULT

If COSINUS achieves

- a threshold of ~1.8keV with a resolution of 0.2keV
- a bound on the rate of 0.01 kg⁻¹ days⁻¹

Warning: Not updated for new DAMA result with 1keVee threshold

- Exclude DAMA/LIBRA signal in a model-independent way:
 - Halo-independent
 - For arbitrary <u>nuclear recoil</u> interactions

Outlook: Cut and count only \rightarrow Make use of spectral information for potentially stronger bounds

A CRYOGENIC NAI DETECTOR PROVIDES

- particle identification on event-by-event basis
- a low(er) threshold for nuclear recoils
- \rightarrow a model-independent test of DAMA

A CRYOGENIC NAI DETECTOR PROVIDES

- particle identification on event-by-event basis
- a low(er) threshold for nuclear recoils
- \rightarrow a model-independent test of DAMA

24

Year	Phase	Activity
2017-19	R&D	Detector prototype development
2020-22	Construction	Build up experimental setup (at LNGS)
2023	1π	Test nuclear recoil origin of the DAMA signal
≥2024	2π	Test annual modulation

COSINUS TIME SKETCH

Year	Phase	Activity
2017-19	R&D	Detector prototype development
2020-22	Construction	Build up experimental setup (at LNGS)
2023	1π	Test nuclear recoil origin of the DAMA signal
≥2024	2π	Test annual modulation

FIRST NAI PROTOTYPE

DATA FROM 1ST PROTOTYPE

plot: G. Angloher et al. JINST 12 P11007 (2017) QF from Tretyak, Astropart. Phys. 33, 40 (2010)

- Energy threshold: 10 keV
- For β/γ -events:

3.7% of the energy deposited in the Nal crystal is measured by the light detector (design goal 4%)

First successful measurement of a Nal crystal as cryogenic detector

Improve detector performance

PROOF-OF-PRINCIPLE OF FINAL DETECTOR DESIGN 2ND PROTOTYPE (2016/17)

²⁴¹Am GAMMA CALIBRATION DATA 2ND PROTOTYPE (2016/17)

F. Reindl et al., arXiv 1711.01482

Performance of the 2ND prototype

- Phonon detector resolution (at zero energy): 1.0keV
- Absolute light yield for a β/γ -event: **13**%

Successful test of detector concept

Undoped Nal is an excellent scintillator at low temperatures

Further improvement of phonon detector performance required

205ppm of ⁴⁰K in the HILGER crystal

COSINUS R&D TIMELINE

Nal threshold: 10 keV

3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017) July 30, 2020

successful test of complete **COSINUS** detector design

energy resolution at zero

Nal threshold: 8.3 keV

13 % detected in light

Schäffner, K. et al. J Low Temp Phys (2018). https://doi.org/10.1007/s10909-018-1967-3

changed interface to thin layer of silicon oil

commissioning of: in-house electronics and DAO from INFN Milano

Nal threshold: 6.5 keV

AmBe calibration campaign

test of new batch of Nal/Nal(Tl) crystals from SICCAS

test of new TES-concept for the Nal crystal

Work ongoing!

NAICE6 - PARTICLE DISCRIMINATION

NAICE6 - PARTICLE DISCRIMINATION

NAICE6 - PARTICLE DISCRIMINATION

Implementin the solution Understanding the problem

Now looking at the TES

- Different pulse-shapes for neutron and β/γ-events, NOT observed for other materials (CRESST, CaWO₄)
- TES not <u>yet</u> well adapted to slow phonon signals of Nal
- ➤ TES Optimization
- Simulation/study of phonon signal pulse formation (solid state physics, l'Aquila university)

Timp

TODO LIST FOR A COSINUS DM MODULE

✓ Operate Nal as cryogenic detector

- ✓ Beaker-shaped light detector
- ✓ Clean (enough) Nal crystals: Grown by SICCAS*

□ Phonon threshold of 1keV: $10 \text{keV} \rightarrow 8.5 \text{keV} \rightarrow 6.5 \text{keV}$

- □ Particle discrimination:
 - □ Phonon pulse formation: Under investigation
 - □In-Situ measurement with TES

Prototype measurement results: G. Angloher et al. JINST 12 P11007 (2017) F. Reindl et al., arXiv 1711.01482 Schäffner, K. et al. J Low Temp Phys (2018)

Detectors Cryostat Water tank DAQ Electronics

PLANNED EXPERIMENTAL SETUP AT LNGS

PLANNED EXPERIMENTAL SETUP AT LNGS

Funding and contributors: The COSINUS family is growing

WE SEARCH FOR COLLABORATORS

We already have Fermi* on board

But: He cannot do everything

Thank you for your attention

Discussion room (together with J. Schieck (CRESST)): Friday, 31. July 14:30 <u>https://cern.zoom.us/j/94156181934</u>

COSINUS IN THE STANDARD SCENARIO

Standard dark matter halo Fixed quenching factors: $QF_{Na}=0.3, QF_{I}=0.09$

Blue band: COSINUS projection (incl. stat. fluctuation) for 100kg days and 1keV nuclear recoil threshold

Dotted lines: Exemplary COSINUS projections for 100kg days and thresholds as in legend

QUENCHING FACTORS

CRYSTAL PROGRAM

- Collaboration with I. Dafinei from Roma 1 (MAECI project)
- Yong Zhu from SICCAS is member of the COSINUS collaboration
- Different batches of crystals tested in the last months
 - Nal / Nal(Tl) grown from SICCAS powder (> 3rd prototype) (3 g – 30 g crystals)
- Crystals that will be/ are tested in the upcoming runs:
 - Nal / Nal(TI) grown from Astrograde-powder

- → promising radiopurity: 5-9 ppb at crystals' nose and 22-35 ppb at the tail (3-inch crystal @ SICCAS)
- Nal / Nal(TI) grown with internal samarium "contamination" to study alpha quenching factor
- Nal(TI) with different amount of thallium dopant

NAI CRYSTAL RADIOPURITY PRELIMINARY ICP-MS RESULTS S. NISI (LNGS)

Sample	Powder	Crystal Grower	К	Rb	Pt	ті	Th	U
			ppb	ppb	ppb	ppm	ppb	ppb
MLL_V1	SICCAS	SICCAS	28000	8	<0.6	2.5	<0.015	<0.015
MLL_V2	SICCAS	SICCAS	1100	<3	6	180	<0.015	<0.015
Nal 4_1_1	Astrograde	SICCAS	350	<3	250	1800	0.1	0.2
DAMA/LIBR	A crystal*		~13	<0.35			0.7 – 10 x 10 ⁻³	0.5 – 7.5 x 10 ⁻³

* Bernabei et al., NIM A592 (2008) 297-315

"DAMA-LIKE" SETUPS - INTERPRETATION

Quenching factors are uncertain → Uncertainty on nuclear recoil energy scale

CRYSTAL RADIOPURITY

Powder					
Element	Astrograde	SICCAS	DAMA		
K [ppb]	<15	100	<20		
U [ppt]	<10	$<\!\!5$	0.7 - 10		
Th [ppt]	<10	< 10	0.5 - 7.5		
Th [ppt]	<10	<10	0.5-7		

Crystur	Contamination	DAMA/LIBRA crystal [ppb]	Commla	V [mmh]
	K	~13	Sample	k [bbb]
	Rb	< 0.35	NaI powder	$30{\pm}10$
		$0.5 - 7.5 \times 10^{-3}$	NaI-ingot (nose)	18 ± 7
	U	0.7 10 x 10-3	NaI-ingot (tail)	25 ± 8

WHAT COSINUS CAN DO WITH A DM MODULE

DAMA (&COSINE,SABRE ...?) signal

COSINUS has the unique potential to clarify a nuclear recoil origin

Confirm O(100kgd) most probably sufficient Rule-out O(100kgd): Strong statement O(1000kgd): Fully modelindependent statement possible (Felix Kahlhoefer, FR, et al JCAP05(2018)074)

COSINUS – 1π GOAL

GOAL: Collect O(100kg days)

10 modules @ 50g for 1 year with 50% overall efficiency*:

91kgd net exposure

04/2019

Conceptual design report handed to the scientific committee of the LNGS underground laboratory

\rightarrow

full endorsement for COSINUS

*includes: cryostat refills, calibration campaigns, cuts

LONG DECAY TIMES – PULSE MODEL

MOUNTING IN CRYOSTAT

FINAL BEAKER-SHAPED LIGHT DETECTOR 2ND PROTOTYPE (2016/17)

- From OPTEC company with perfect surface quality
- Diameter: 40mm
- Height: 38mm
- Mass: 4g

