The SENSEI Experiment: An Ultrasensitive Search for Sub-GeV Dark Matter

Mariano Cababie

University of Buenos Aires
IFIBA - CONICET/FNAL
for the SENSEI* Collaboration
@ ICHEP 2020

The SENSEI Collaboration

Fermilab:

F. Chierchie, M. Cababie, G. Cancelo, M. Crisler, A. Drlica-Wagner, J. Estrada,
 G. Fernandez-Moroni, D. Rodrigues, M. Sofo-Haro, L. Stefanazzi, J. Tiffenberg

Stony Brook:

• L. Chaplinsky, Dawa, R. Essig, D. Gift, S. Munagavalasa, A. Singal

Tel-Aviv:

• L. Barak, I. Bloch, E. Etzion, A. Orly, S. Uemura, T. Volansky

U. Oregon:

• T.-T. Yu

Fully funded by Heising-Simons Foundation & leveraging R&D support from Fermilab

Recent news

Electron recoils for sub-GeV DM in Skipper-CCDs

- Benchmark models:
 - ◆ DM-e⁻ scattering, DM absorption
- Silicon CCDs as ionization detectors
 - DM-e⁻ interaction (or absorption)
 - Energy transfer via electron recoil
 - lonized h⁺ are captured by potential well
 - Signal is readout after exposure is finished.
- DM range mass: 1-1000 MeV (~eV on DM absorption)

CCD basics

- CCD = pixelated silicon array
- ◆ ~2g per device of high-resistivity fully-depleted silicon
- >99.9% charge collection and transfer efficiency
- * ~**5.5Mpixels** of 15x15x675 μm³ each

- DM range mass: 1-1000 MeV (~eV on DM absorption)
 - Very small signals
 - Very low energy threshold
- Skipper technology allows to read repeatedly the same pixel to achieve sub-electron noise
- Low energy threshold down to 1.2eV (Si band gap)

Charge [e⁻]

- In a conventional CCD, charge is moved to the sense node and readout once.
 Then it is drained and charge is lost.
- Longer integration reduces noise but cannot reduce 1/f noise.
- Skipper-CCD moves charges towards and backwards the floating sense node to achieve multiple readout

In a conventional CCD, charge is moved to the sense node and readout once.
 Then it is drained and charge is lost.

• Longer integration reduces noise but cannot reduce 1/f noise.

 Skipper-CCD moves charges towards and backwards the floating sense node to achieve multiple readout

In a conventional CCD, charge is moved to the sense node and readout once.
 Then it is drained and charge is lost.

Longer integration reduces noise but cannot reduce 1/f noise.

Our setup: location and shielding

- Setup ~107m below surface at shallow underground MINOS site @FNAL.
- This reduces muon environmental background radiation

Inner (1" each) and outer (2" each) lead bricks
 reduces environmental gamma radiation

 Operated at 135K and high-vacuum regime to reduce dark current without generating CTI

NuMI building

107 m

MINOS Hall

Electronics | Inside the Vessel

- Shielding design adapted from DAMIC:
 cylindrical vacuum vessel with lead
 "plugs" above and below the CCD
- Operated with specifically designed readout electronics (LTA board)
 (Low Threshold Acquisition)

 LTA boards admit multiple reading of multiple CCDs synchronously which enables scaling

Our last result: quality cuts

- Bad pixels/dark spikes
- Serial register hits
- Bleeding (CTI)
- Halo (low energy events near high energy events) (new!)
- Loose clusters (≥2e- analysis)
- Others

Our last result: quality cuts

- Bad pixels/dark spikes
- Serial register hits
- Bleeding (CTI)
- Halo (low energy events near high energy events) (*new!*)
- Loose clusters (≥2e- analysis)
- Others

Our last result: data and some specifics

- ♦ Blinded dataset of 22 images, Feb 25 Mar 20
 →20hs exposure + 6hs readout (each)
 - →Total exposure: **19.926 gram-days**
- 300 skipper samples → 0.14e⁻ readout noise
- * x20 more mass than 2019 (x10-15 effectively)

- Background as low as ~3400 events/kg/keV/day (~3 times less than 2019)
- DC rate Single-electron event rate as low as ~1.6x10⁻⁴ e⁻/pixel/day or ~450 events/gram/day (~20 times less than 2019)
- * x(8-35) more effective exposure (depending on e^{-1} channel)

Our last result: limits on DM

World-leading constraints on DM-e⁻ scattering for light mediator (top right) and heavy mediator (top left), up to 10 MeV.

World-leading constraints for
 DM-nucleus scattering (bottom left)
 through light mediator from 600 keV to
 MeV (Migdal Effect [5]).

World-leading constraints for **DM absorption on electrons** (bottom right)
 from 1.2 to 12.8 eV.

Perspectives

2017	Demonstration of 0.068e- noise in SENSEI prototype [1].
2018	DM search with surface run of SENSEI prototype [2].
2019	DM search with underground run of SENSEI prototype [3].
April 2020	DM search with underground run of SENSEI first science grade Skipper-CCD [4].
2021	???

Perspectives

• We have our science detectors and they work! Next step: production (in progress).

• We are assembling our vessel that will go to SNOLAB.

o MINOS (standard shield): 10000 dru

MINOS (extra shield): 3000 dru

SNOLAB (final setup): 5 dru.

 Vessel is at Fermilab, ready for testing prior to travel.

Perspectives

- * "Phase 1" system **fully operational** since December @SNOLAB
- ♦ Final mass: 100g (~2g now).
- Deployment in stages, increasing mass.
 Results will be presented gradually.
- SENSEI should be deployed by 2020 end of 2020 beginning of 2021.

Sho Uemura, Kevin Kuk and Guillermo Moroni @SNOLAB December 2019

~2027

 $\begin{array}{c}
 10^{-31} \\
 10^{-32} \\
 10^{-33}
 \end{array}$

10-36

 10^{-37}

 $10^{-38} \\ 10^{-39}$

 $\begin{array}{c|c}
 10^{-40} \\
 10^{-41}
 \end{array}$

Mariano Cababie for SENSEI | New Perspectives 2020 | July 20 | 18/18

The SENSEI Collaboration

THANK YOU!

The SENSEI Collaboration

BACK UP SLIDES

MINOS shielding

Mariano Cababie for SENSEI | New Perspectives 2020 | July 20

References

- [1] Tiffenberg, Javier, et al. "Single-electron and single-photon sensitivity with a silicon Skipper CCD." Physical Review Letters 119.13 (2017): 131802.
- [2] Crisler, Michael, et al. "SENSEI: first direct-detection constraints on sub-GeV dark matter from a surface run." Physical Review Letters 121.6 (2018): 061803.
- [3] Abramoff, Orr, et al. "SENSEI: Direct-detection constraints on sub-GeV dark matter from a shallow underground run using a prototype skipper CCD." Physical review letters 122.16 (2019): 161801.
- [4] Barak, Liron, et al. "SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD." arXiv
- [5] Essig, Rouven, et al. "Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors." Physical Review Letters 124.2 (2020): 021801.

preprint arXiv:2004.11378 (2020).

Our last result: single electron event rate

- * A 1e- rate excess is found extrapolating from higher temperatures **assuming only surface DC**.
- Extrinsic or intrinsic sources?

RO stage luminescence, other DC

Diffusive light, related to high energy events

- Spatial correlation between high energy events (>360eV) and 1e- events.
- Low-energy photons? From copper module, CCD or both?
- Can we mask it up to 100%?

Mariano Cababie for SENSEI | New Perspectives 2020 | July 20

Sample image

Mariano Cababie for SENSEI | New Perspectives 2020 | July 20

1e- rate vs. shielding

- We have data with and without the outer ring of lead bricks
- Factor of 3 reduction in the rate of high-energy tracks → factor of 3 reduction in the 1e⁻ rate
 - There is some mechanism by which ionizing radiation generates charge uniformly in our CCD
 - Better shielding will very likely further reduce our 1e⁻ rate

