

Hadronic Charm Meson Decays @ BESIII

Chuangxin Lin (On behalf of the BESIII Collaboration) Sun Yat-sen University (SYSU) ICHEP 2020, 28th Jul.-6th Aug., Prague, virtual conference

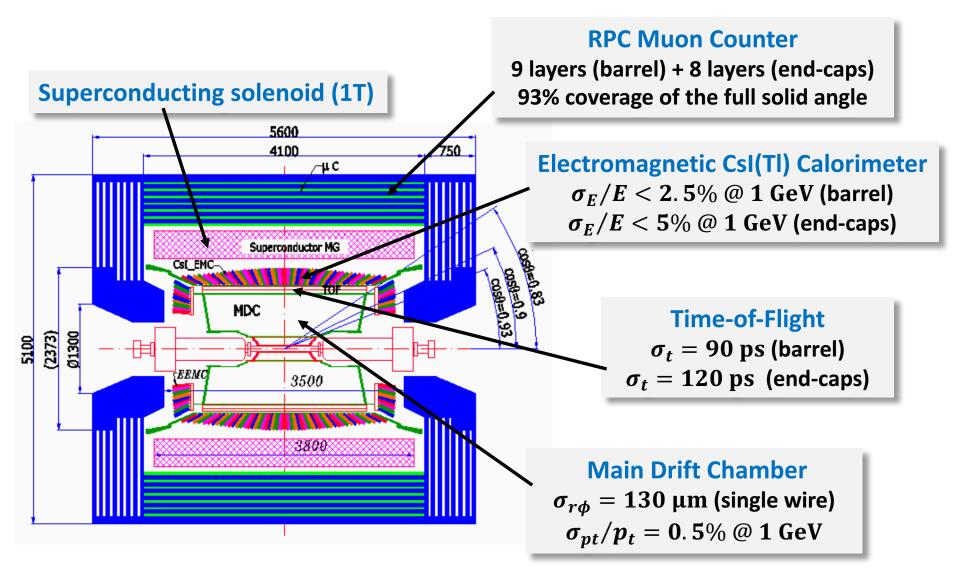
Outline

> Introduction

- > Strong-phase parameters in D^0/\overline{D}^0 decay
- > Amplitude analysis of D_s^+ and D^0 decay
- > Branching fractions (BFs) of D_s^+ and D^+/D^0 decay

> Summary

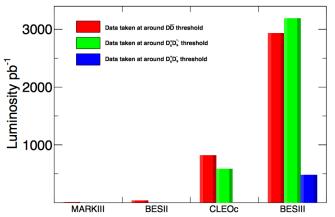
Beijing Electron Positron Collider II(BEPCII)


Double storage ring ~240 m

Linac ~200 m

BESIII detector

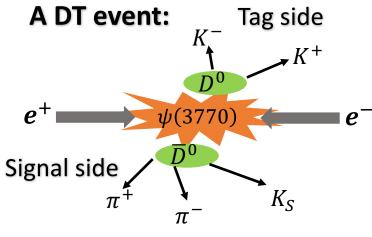
2004: Started upgrade BEPCII/BESIII $\sim \sqrt{s} = 2.0 \sim 4.9 \text{ GeV}$ $\sim \mathcal{L} = 1 \times 10^{33} \text{ cm}^{-2} s^{-1}$ (April 2016) 2008: Test run 2009-now: τ -charm physics runs

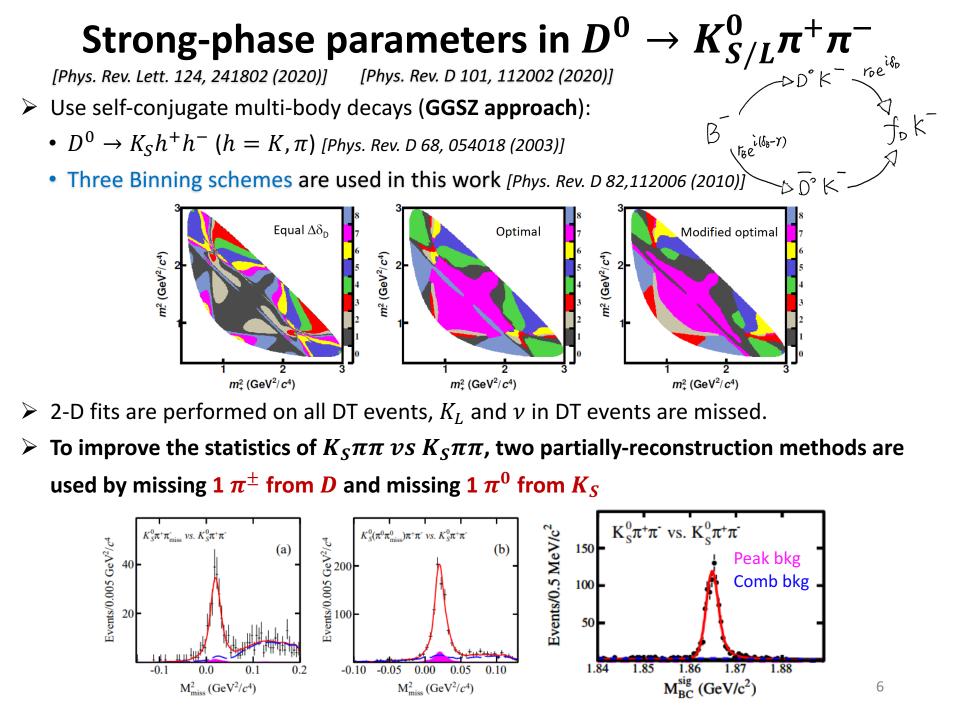

Beijing Spectrometer(BESIII) Experiment

Charm data and analysis method

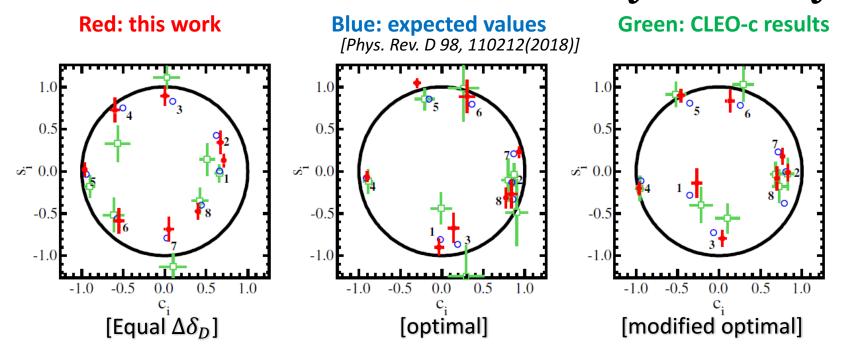
Data produced near threshold without accompanying particles:

Data samples	\sqrt{s} (GeV)	Int. \mathcal{L} (fb ⁻¹)	x CLEO-c
$D\overline{D}$	3.773	2.93	3.6 x
$D_s \overline{D}_s^*$	4.178	3.19	5.3x
$D_s\overline{D}_s^*$	4.189 - 4.226	3.18	-



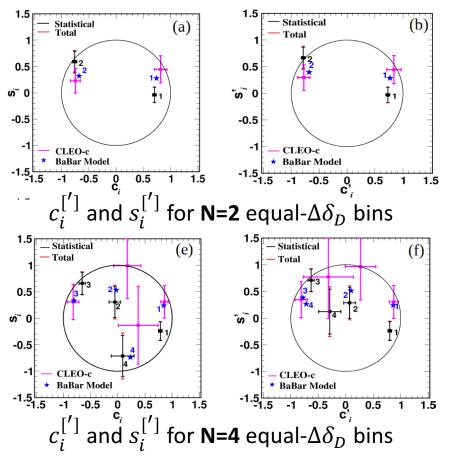

□ Single tag (ST):
$$\mathcal{B}(D \to f) = \frac{N_{\text{sig}}}{2 \times N_{D\overline{D}}^{tot} \times \epsilon}$$

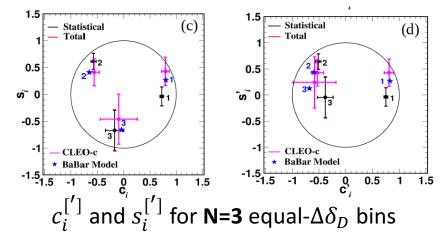
• For partial reconstruct, few bkg channels.


Double tag (DT):
$$\mathcal{B}(D \to f) = \frac{N_{\text{sig}}}{N_{ST}^{tot} \times \epsilon}$$

• DT provides clean samples for amplitude analysis and BFs measurement.

Strong-phase parameters $c_i^{(\prime)}$ and $s_i^{(\prime)}$

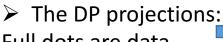

- The most precise measurements to date.
- > The strong-phase parameters are limited by statistical uncertainty.
- > A factor of ~2.5 (1.9) and ~2.8 (2.2) more precise for $c_i(s_i)$ and $c'_i(s'_i)$ than previous results, respectively.
- → The associated uncertainty on γ is reduced from ~4° to ~1° in $B^- \rightarrow D(K_S \pi \pi) K^-$ [GGSZ].
- > The improved result is important input for γ measurement by B decay.


see back up for $c'_i(s'_i)$ ⁷

Strong-phase parameters in $D^0 \rightarrow K^0_{S/L} K^+ K^-$

[arXiv: 2007.07959]

> Using the equal $\Delta \delta_D$ binning scheme (**GGSZ approach**):


Pink: CLEO-c results Blue: BABAR model Black points with error bar: This work

- Still limited by statistical uncertainty
- ➤ The **best precision** for strong-phase parameters of $D^0 \rightarrow K^0_{S/L}K^+K^-$ decay.
- Determination of charm-mixing parameters and search for CP violation.

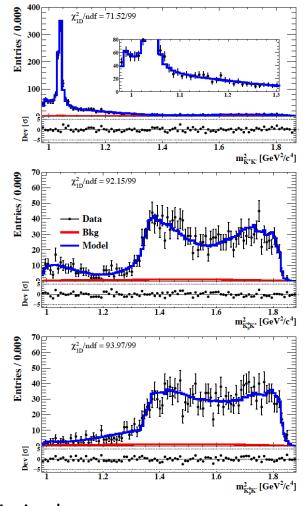
Dalitz plot analysis of $D^0 \rightarrow K^0_S K^+ K^-$

[arXiv: 2006.02800]

- \succ Using 1856±45 flavor-tagged signal events with a purity of 96.37%.
- The Dalitz plot (DP) is well described by a set of six resonances.

Full dots are data

Blue line is amplitude model


Final state	Magnitude	Phase [rad]	Fit fraction [%]		$\operatorname{Sign.}[\sigma]$
$a_0(980)^0 K_S^0$	1	0	$90\pm10\pm17$		>10
$a_0(980)^+K^-$	$0.64^{+0.14}_{-0.08}\pm0.09$	$2.94^{+0.19}_{-0.14} \pm 0.06$	$34 \pm 7 \pm 6$		>10
$\phi(1020)K_{S}^{0}$	$0.74^{+0.08}_{-0.04}\pm0.08$	$1.67 \pm 0.08 \pm 0.19$	$48 \pm 2 \pm 3$		>10
$a_2(1320)^+K^-$	$0.12 \pm 0.03 \pm 0.01$	$-2.92^{+0.21}_{-0.26} \pm 0.31$	< 2.3 (@90% C.L.), CV = 1	1.4	3.9
$a_2(1320)^-K^+$	$0.09 \pm 0.03 \pm 0.02$	$-0.06 \pm 0.23 \pm 0.28$	< 1.6 (@90% C.L.), CV = 0	0.8	3.5 > 5.9
$a_0(1450)^-K^+$	$0.16^{+0.12}_{-0.05} \pm 0.04$	$0.12 \pm 0.58 \pm 0.50$	$< 13.2 \ (@90 \ \% \ C.L.), \ CV =$	2.2	3.5
Total			176 ± 20		

\square The coupling of $a_0(980)$ to $K\overline{K}$ is:

 $g_{K\overline{K}} = (3.77\pm0.24(\mathrm{stat.})\pm0.35(\mathrm{sys.}))\mathrm{GeV}$

□ The first absolute measurement:

 $\mathcal{B}(D^0 \to K_s^0 K^+ K^-) =$ $(4.51 \pm 0.05 (\text{stat.}) \pm 0.16 (\text{sys.})) \times 10^{-3}.$ Systematically limited

Amplitude analysis of $D_s^+ o K^+ K^- \pi^+$

> Provide inputs for theory and refine theoretical models.

[Phys. Lett. B **351**, 591 (1995)] [Phys. Rev. D **79**, 072008 (2009)] [Phys. Rev. D **83**, 052001 (2011)]

Events/(1.2 MeV²/c⁴

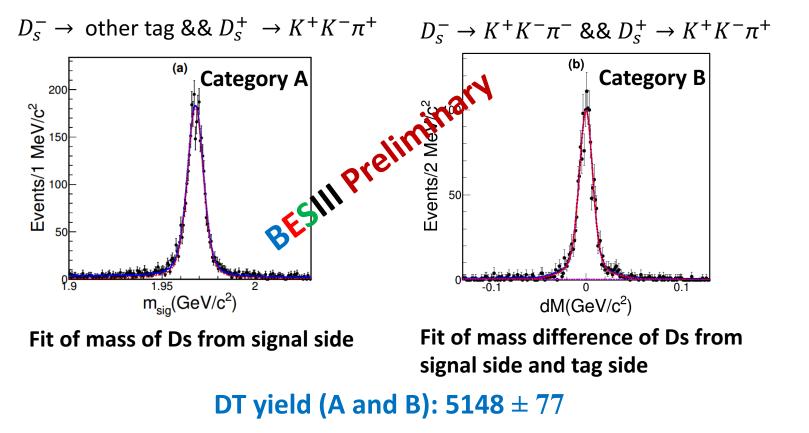
> An obvious difference on BFs of $S(980)\pi^+$ between BABAR and CLEO.

The DP projections:
Black dots with error bars: data
Blue solid lines: projection of result

Comparison with BABAR and CLEO results:

Amplitude	BABAR	CLEO	BESIII (this analysis)		200
$D_s^+ \rightarrow \bar{K}^*(892)^0 K^+$	47.9±0.5±0.5	$47.4 \pm 1.5 \pm 0.4$	48.3±0.9±0.6		
$D_s^+ \rightarrow \phi(1020)\pi^+$	$41.4 \pm 0.8 \pm 0.5$	$42.2 \pm 1.6 \pm 0.3$	$40.5 \pm 0.7 \pm 0.9$		² / ₂ 150
$D_s^+ \rightarrow S(980)\pi^+$	$16.4 \pm 0.7 \pm 2.0$	$28.2 \pm 1.9 \pm 1.8$	$19.3 \pm 1.7 \pm 2.0$	9 300- -	We
$D_s^+ \to \bar{K}_0^* (1430)^0 K^+$	$2.4 \pm 0.3 \pm 1.0$	$3.9 \pm 0.5 \pm 0.5$	$3.0 \pm 0.6 \pm 0.5$	0:02 2000	
$D_s^+ \rightarrow f_0(1710)\pi^+$	$1.1 \pm 0.1 \pm 0.1$	$3.4 \pm 0.5 \pm 0.3$	$1.9 \pm 0.4 \pm 0.6$	uts/(žiu 🛝 j
$D_s^+ \rightarrow f_0(1370)\pi^+$	$1.1 \pm 0.1 \pm 0.2$	$4.3 \pm 0.6 \pm 0.5$	$1.2 \pm 0.4 \pm 0.2$		50- Thu
$\sum FF(\%)$	$110.2 \pm 0.6 \pm 2.0$	$129.5 \pm 4.4 \pm 2.0$	$114.2 \pm 1.7 \pm 2.3$		
χ^2/NDF	2843/2291=1.2	170/117=1.5	290/280=1.04	0.5 1 1.5 2	
Events	96307 ± 369(purity 95%)	14400(purity 85%)	4397(purity 99.6%)	$m^2 (K^- \pi^+) (GeV^2/c^4)$	m² (Κ⁺ π⁺) (GeV²/

Background free

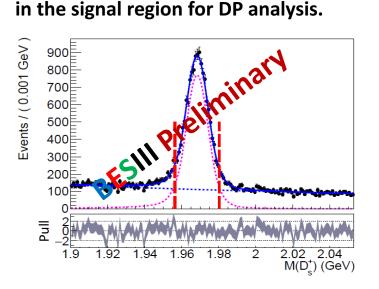

m² (K⁺ K⁻) (GeV²/c⁴)

BESIII results are closer to BABAR's.

1.05

m² (K⁺ K⁻) (GeV²/c⁴)

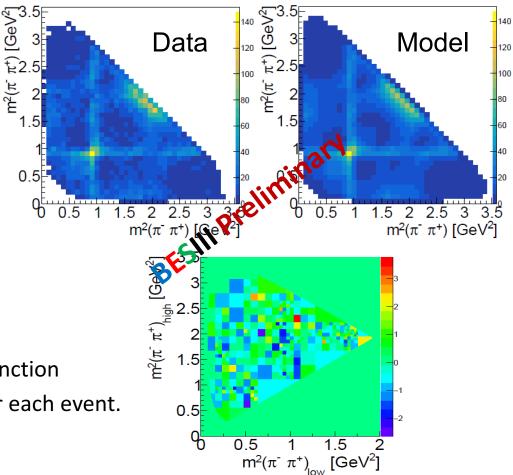
BF measurement of $D_s^+ o K^+ K^- \pi^+$



BFs results:

 $\mathcal{B}(D_s^+ \to K^+ K^- \pi^+) = (5.47 \pm 0.08_{\text{stat}} \pm 0.13_{\text{sys}})\% \implies \text{The best precision up to now!}$ $\mathcal{B}(D_s^+ \to \bar{K}^* (892)^0 K^+) = (3.94 \pm 0.12)\% \implies \text{Consistent with theoretical predictions} \\ \mathcal{B}(D_s^+ \to \phi(1020)\pi^+) = (4.60 \pm 0.17)\% \implies \text{[Phys. Rev. D 93, 114010 (2016)]}$

Dalitz plot analysis of $D_s^+ ightarrow \pi^+ \pi^- \pi^+$


- f₀(980) resonance still needs to be better understood. [Phys. Rev. D 93 (2016) 114010]
- > Important input for the global study of $D_s \rightarrow VP$.

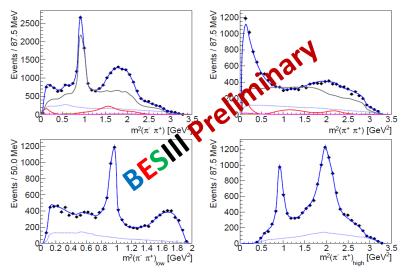
13.8 K data events with 80% signal purity

Unbinned ML fit with likelihood function depending on DP position (x, y) for each event.

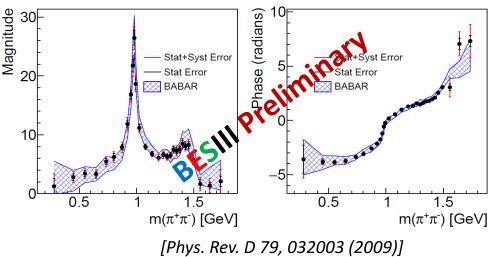
Dalitz plot:

Results of $D_s^+ o \pi^+ \pi^- \pi^+$

Fit results by using the BABAR model.


See back-up for other models tested [Phys. Rev. D 79, 032003 (2009)]

	-		
Decay mode	Decay fraction (%)	Amplitude	Phase (radians)
$f_2(1270)\pi^+$	$10.52 \pm 0.83 \pm 1.15$	1. (Fixed)	0. (Fixed)
$\rho(770)\pi^{+}$	$0.87 \pm 0.38 \pm 0.52$	$0.13 \pm 0.03 \pm 0.04$	$5.44 \pm 0.25 \pm 0.62$
$\rho(1450)\pi^+$	$1.26 \pm 0.40 \pm 0.53$	$0.91 \pm 0.16 \pm 0.22$	$1.03 \pm 0.32 \pm 0.51$
S-wave	$84.15 \pm 0.83 \pm 1.30$	See	back-up
Total	$96.80 \pm 2.45 \pm 3.50$		


S-wave is parametrized by an interpolation between the N=29 control points also used by BABAR:

 $A_{\mathcal{S}-\text{wave}}(m_{\pi\pi}) = \text{Interp}(c_k(m_{\pi\pi})e^{i\phi_k(m_{\pi\pi})})_{k=1,\dots,N}$

Blue dashed: background, Gray: $\pi^+\pi^- S$ -wave, Red: f₂(1270) π , Yellow: $\rho(770)\pi$, Magenta: $\rho(1450)\pi$, Blue: full model

With improved precision, our results are compatible with BABAR measurements:

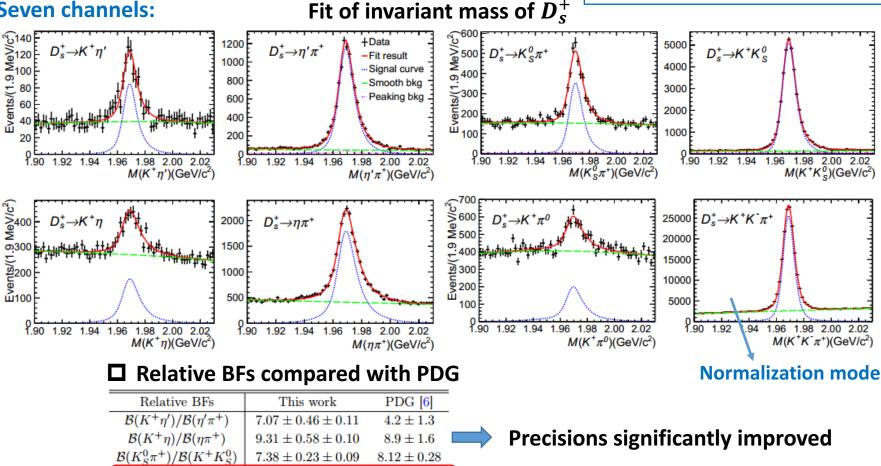
BFs of $D_s^+ \rightarrow PP$

[arXiv:2005.05072 accepted by JHEP]

 $E_{cms} = 4.178 - 4.226 \text{ GeV}$

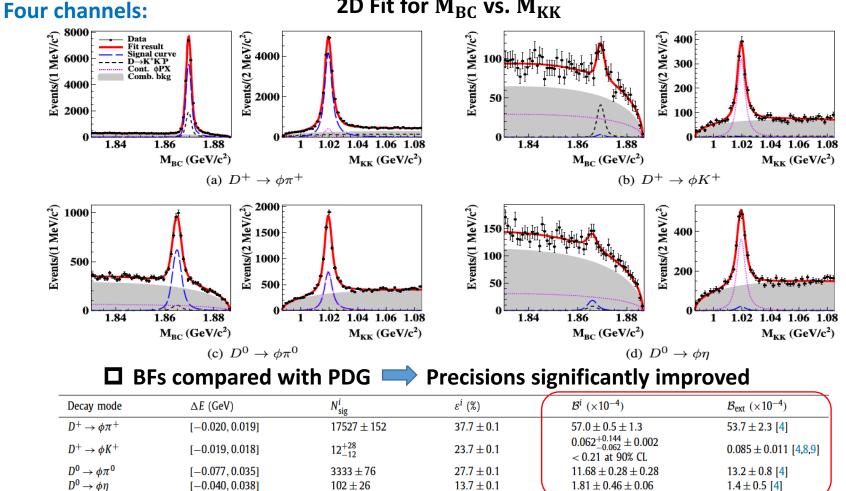
Using 6.37 fb^{-1} DsDs* data at

- Crucial calibrations to different theoretical models
- \blacktriangleright Explore SU(3) asymmetries for D_s^+ meson


 $\mathcal{B}(K^+\eta)/\mathcal{B}(K^+\eta')$

 $\mathcal{B}(\eta\pi^+)/\mathcal{B}(\eta'\pi^+)$

 $61.7 \pm 5.5 \pm 3.6$

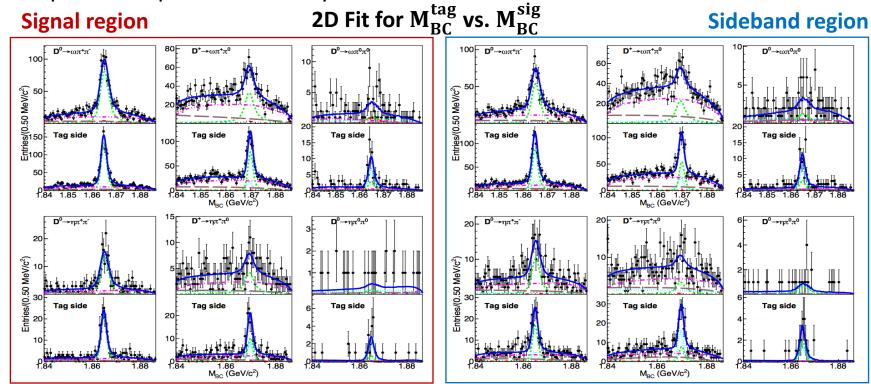

 $46.90 \pm 0.71 \pm 2.04$

Seven channels:

BFs of $D \rightarrow \phi P$ [Phys. Lett. B 798 (2019) 135017]

- \blacktriangleright Precision measurement of absolute BFs of $D \rightarrow \phi P$
- Explore and check isospin symmetry between u and d quarks.

2D Fit for M_{BC} vs. M_{KK}


 $\mathcal{B}(D^0 \to \phi \pi^0) / \mathcal{B}(D^+ \to \phi \pi^+) = (20.49 \pm 0.50 \pm 0.45)\%$

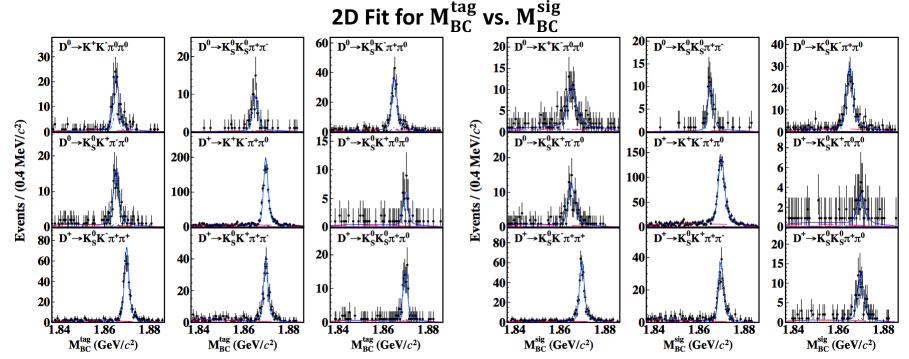
Support isospin symmetry

BFs of $D \rightarrow \omega \pi \pi$

[arXiv:2007.02542]

- → Precision measurement of absolute BFs of SCS decay $D \rightarrow \omega \pi \pi$.
- Important inputs for B decays.

Results of this work: Six channels


Precisions significantly improved

	$N_{ m SG}^{\omega/\eta}$							$\mathcal{B}^{ m sig}~(imes 10^{-3})$		
$D^0 \rightarrow \omega \pi^+ \pi^-$	908.0 ± 39.4	74.6 ± 1.5	610.5 ± 35.1	41.4 ± 2.5	411.2 ± 48.3	12.9σ	0.882	$1.33 \pm 0.16 \pm 0.12$	1.6 ± 0.5	-
$D^+ \to \omega \pi^+ \pi^0$	474.0 ± 42.8	73.3 ± 1.2	329.0 ± 34.3		232.9 ± 49.8	7.7σ	0.872	$3.87 \pm 0.83 \pm 0.25$	—	First measurement
$D^0 o \omega \pi^0 \pi^0$	20.2 ± 10.5	75.2 ± 5.6	22.1 ± 10.0	19.0 ± 1.2	-15.4 ± 13.0	0.6σ	0.862	< 1.10	_	
$D^0 o \eta \pi^+ \pi^-$	151.3 ± 14.6	42.6 ± 0.9	115.0 ± 15.3	6.1 ± 0.2	96.2 ± 16.0	8.3σ	0.227	$1.06 \pm 0.18 \pm 0.07$	1.09 ± 0.16	
$D^+ o \eta \pi^+ \pi^0$	61.5 ± 14.3	41.4 ± 0.7	47.3 ± 16.4		41.9 ± 15.8	3.5σ	0.224	$2.47 \pm 0.93 \pm 0.16$	1.38 ± 0.35	
$D^0 o \eta \pi^0 \pi^0$	5.7 ± 3.8	40.6 ± 3.3	13.1 ± 4.8	2.0 ± 0.1	-1.6 ± 4.3	0.1σ	0.221	< 2.38	0.38 ± 0.13	16

BFs of $D \rightarrow K\overline{K}\pi\pi$

→ Precision measurement of absolute BFs of $D \rightarrow K\overline{K}\pi\pi$.

> Explore $D\overline{D}$ mixing, CP violation and quark SU(3)-flavor asymmetry.

Results of this work: Nine channels

nnels		Precisions	significantly improved
$\epsilon_{ m sig}(\%)$	$\mathcal{B}_{ m sig}\left(imes 10^{-3} ight)$	$\mathcal{B}_{ m PDG} \left(imes 10^{-3} ight)$	
8.20 ± 0.07	$0.69 \pm 0.07 \pm 0.04$	-	
5.14 ± 0.04	$0.52 \pm 0.09 \pm 0.03$	1.22 ± 0.23	
6.38 ± 0.06	$1.32 \pm 0.14 \pm 0.07$	-	Five channels are obso

^J for the first time.

Signal mode	$\Delta E_{ m sig} ({ m MeV})$	$N_{ m DT}^{ m net}$	$\epsilon_{ m sig}\left(\% ight)$	$\mathcal{B}_{ m sig}\left(imes 10^{-3} ight)$	$\mathcal{B}_{\mathrm{PDG}}\left(imes 10^{-3} ight)$
$D^0 \to K^+ K^- \pi^0 \pi^0$	(-59, 40)	132.1 ± 13.9	8.20 ± 0.07	$0.69 \pm 0.07 \pm 0.04$	—
$D^0 \rightarrow K^0_S K^0_S \pi^+ \pi^-$	(-22, 22)	62.5 ± 10.4	5.14 ± 0.04	$0.52 \pm 0.09 \pm 0.03$	1.22 ± 0.23
$D^0 \to K^0_S K^- \pi^+ \pi^0$	(-43, 32)	195.8 ± 20.3	6.38 ± 0.06	$1.32 \pm 0.14 \pm 0.07$	-
$D^0 \rightarrow K^0_S K^+ \pi^- \pi^0$	(-44, 33)	119.3 ± 12.9	7.94 ± 0.06	$0.65 \pm 0.07 \pm 0.02$	_
$D^+ \to K^+ K^- \pi^+ \pi^0$	(-39, 30)	1311.7 ± 40.4	12.72 ± 0.08	$6.62 \pm 0.20 \pm 0.25$	26^{+9}_{-8}
$D^+ \rightarrow K^0_S K^+ \pi^0 \pi^0$	(-61, 44)	34.7 ± 7.2	3.77 ± 0.02	$0.59 \pm 0.12 \pm 0.04$	—
$D^+ \to K^0_S K^- \pi^+ \pi^+$	(-22,21)	467.9 ± 26.6	13.24 ± 0.08	$2.27 \pm 0.12 \pm 0.06$	2.38 ± 0.17
$D^+ \to K^0_S K^+ \pi^+ \pi^-$	(-21,20)	279.6 ± 18.1	9.39 ± 0.06	$1.91 \pm 0.12 \pm 0.05$	1.74 ± 0.18
$D^+ \to K^0_S K^0_S \pi^+ \pi^0$	(-46, 37)	80.4 ± 12.0	3.84 ± 0.03	$1.34 \pm 0.20 \pm 0.06$	-

observed

BFs of exclusive hadronic $D \rightarrow \eta X$

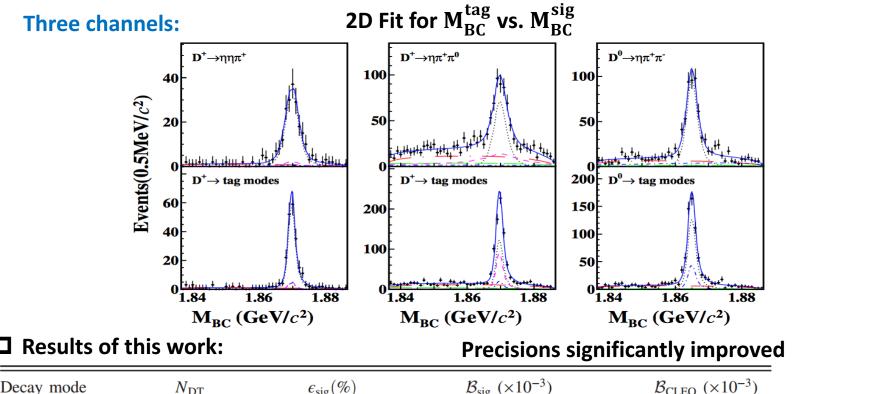
[Phys. Rev. Lett. 124, 241803 (2020)]

- > Key potential backgrounds in some Lepton Flavor Universality (LFU) tests
- > Known D^0/D^+ exclusive decays to η only account for 44% / 16%
- > Crucial to address the tensions found in LFU tests with semi-leptonic **B** decays
- Search for CP violation in hadronic **D** decays

□ 14 absolute BFs of this work: All 14 channels are first measured

Decay	$\Delta E_{\rm sig}$	$N_{\rm DT}$	$\epsilon_{ m sig}$	$\mathcal{B}_{ ext{sig}}$
	(MeV)		(%)	$(\times 10^{-4})$
$D^0 \to K^- \pi^+ \eta$	(-37, 36)	6116.2 ± 81.8	14.22	185.3(25)(31)
$D^0 \to K^0_S \pi^0 \eta$	(-57, 45)	1092.7 ± 35.2	4.66	100.6(34)(30)
$D^0 \to K^+ K^- \eta$	(-27, 27)	$13.1\pm~4.0$	9.53	0.59(18)(05)
$D^0 \to K^0_S K^0_S \eta$	(-29, 28)	$7.3\pm~3.2$	2.36	1.33(59)(18)
$D^0 \to K^- \pi^+ \pi^0 \eta$	(-44, 36)	576.5 ± 28.8	5.53	44.9(22)(15)
$D^0 \to K^0_S \pi^+ \pi^- \eta$	(-33, 32)	248.2 ± 18.0	3.80	28.0(19)(10)
$D^0 ightarrow K^0_S \pi^0 \pi^0 \eta$	(-56, 41)	64.7 ± 9.2	1.58	17.6(23)(13)
$D^0 \to \pi^+\pi^-\pi^0\eta$	(-57, 45)	508.6 ± 26.0	6.76	32.3(17)(14)
$D^+ \to K^0_S \pi^+ \eta$	(-36, 36)	1328.2 ± 37.8	6.51	130.9(37)(31)
$D^+ \to K^0_S K^+ \eta$	(-27, 27)	$13.6\pm~3.9$	4.72	1.85(52)(08)
$D^+ \to K^- \pi^+ \pi^+ \eta$	(-33, 33)	188.0 ± 15.3	8.94	13.5(11)(04)
$D^+ \to K^0_S \pi^+ \pi^0 \eta$	(-49, 41)	48.7 ± 9.7	2.57	12.2(24)(06)
$D^+ \to \pi^+ \pi^+ \pi^- \eta$	(-40, 38)	514.6 ± 25.7	9.67	34.1(17)(10)
$D^+ \to \pi^+ \pi^0 \pi^0 \eta$	(-70, 49)	192.5 ± 17.1	3.86	32.0(28)(17)

Six charge-conjugated BFs and asymmetries


Decay	$\mathcal{B}^+_{\rm sig}(imes 10^{-4})$	$\mathcal{B}_{\overline{\mathrm{sig}}}^{-}(\times 10^{-4})$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$D^0 \to K^- \pi^+ \eta$	182.1 ± 3.5	189.1 ± 3.6	$-1.9\pm1.3\pm1.0$
$D^0 \to K^0_S \pi^0 \eta$	98.4 ± 4.8	106.3 ± 5.1	$-3.9\pm3.2\pm0.8$
$D^0 \to K^- \pi^+ \pi^0 \eta$	41.7 ± 2.7	48.8 ± 3.2	$-7.9\pm4.8\pm2.5$
$D^0 \to \pi^+\pi^-\pi^0\eta$	29.8 ± 2.2	33.3 ± 2.5	$-5.5\pm5.2\pm2.4$
$D^+ \to K^0_S \pi^+ \eta$	129.9 ± 5.3	132.3 ± 5.4	$-0.9\pm2.9\pm1.0$
$D^+ \to \pi^+\pi^+\pi^-\eta$	35.4 ± 2.4	32.7 ± 2.4	$+2.5 \pm 5.0 \pm 1.6$

No evidence of CP violation found

BFs of $D^+ \rightarrow \eta \eta \pi^+$ and $D \rightarrow \eta \pi \pi$

[Phys. Rev. D 101, 052009 (2020)]

- \succ Clarify the gaps between inclusive and known $D \rightarrow \eta X$ decay rates.
- Provide important inputs for charm and B physics.

Decay mode	N _{DT}	$\epsilon_{ m sig}(\%)$	\mathcal{B}_{sig} (×10 ⁻³)	$\mathcal{B}_{\text{CLEO}}$ (×10 ⁻³)
$D^+ \rightarrow \eta \eta \pi^+$	179 ± 15	24.96 ± 0.12	$2.96 \pm 0.24 \pm 0.10$	N/A First observation
$D^+ o \eta \pi^+ \pi^0$	381 ± 26	28.11 ± 0.13	$2.23 \pm 0.15 \pm 0.10$	$1.38 \pm 0.31 \pm 0.16$
$D^0 o \eta \pi^+ \pi^-$	450 ± 25	39.98 ± 0.17	$1.20 \pm 0.07 \pm 0.04$	$1.09 \pm 0.13 \pm 0.09$

No evidence of CP violation found

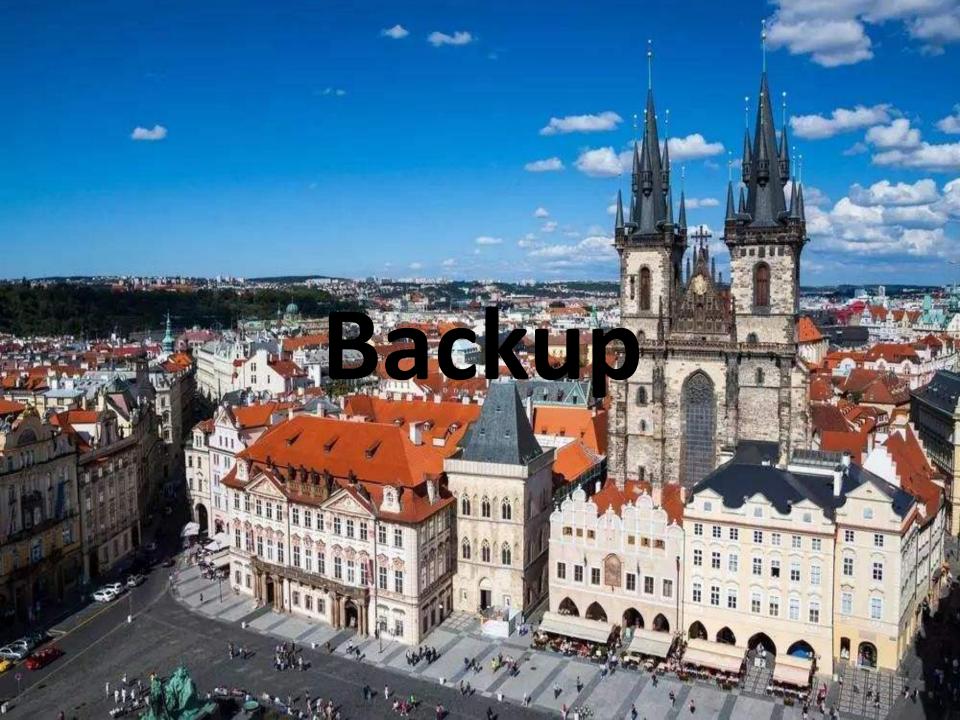
Summary

- Measurement of strong-phase parameters
 - $D^0 \rightarrow K^0_{S/L} \pi^+ \pi^-$: Best precision, important
 - $D^0 \to K^0_{S/L} K^+ K^-$: input for γ angle
- > Amplitude analysis of D^0 and D_s^+
 - $D^0 \rightarrow K^0_S K^+ K^-$: First absolute measurement
 - $D_s^+ \to K^+ K^- \pi^+$, $\pi^+ \pi^- \pi^+$: Best precision
- \succ BFs of D_s^+ and D^+/D^0 decay
 - First measurement:
 - $D^+ \to \omega \pi^+ \pi^0$ $D^+ \to \eta \eta \pi^+$
 - $D \rightarrow K\overline{K}\pi\pi$: **5** channels
 - $D \rightarrow \eta X$: **14** channels

Best precision:

 $D_s^+ \rightarrow PP$: **7** channels

- $D \rightarrow \phi P$: **4** channels
- $D \rightarrow \omega \pi \pi, \eta \pi \pi$: **5** channels
- $D \rightarrow K\overline{K}\pi\pi$: **4** channels

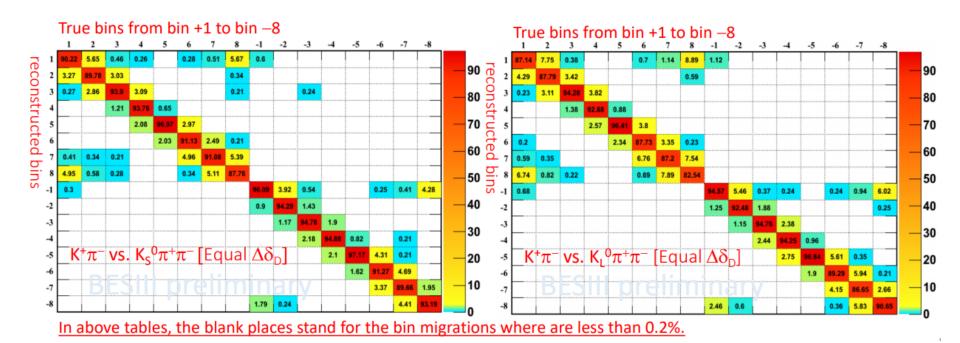

17 fb⁻¹ ψ (3770) data will be collected in the next two years. More results in $D_{(s)}$ hadronic decays are coming...

White Paper of BESIII [Chin. Phys. C 44, 040001 (2020)]

□ Test the theory

- Check SU(3) asymmetry
- Support isospin symmetry
- No CP violation found

Signal yield of $D^0 o K^0_{S/L} \pi^+ \pi^-$

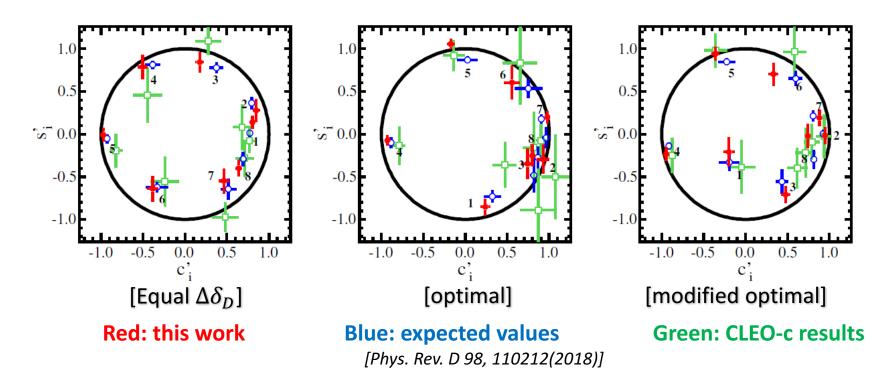

Mode	$N_{\rm ST}$	$N_{K_S^0\pi^+\pi^-}^{\rm DT}$	$N_{K_{L}^{0}\pi^{+}\pi^{-}}^{\mathrm{DT}}$
Flavor tags		0	
$K^+\pi^-$	549373 ± 756	4740 ± 71	9511 ± 115
$K^+\pi^-\pi^0$	1076436 ± 1406	5695 ± 78	11906 ± 132
$K^+\pi^-\pi^-\pi^+$	712034 ± 1705	8899 ± 95	19225 ± 176
$K^+ e^- \bar{\nu}_e$	458989 ± 5724	4123 ± 75	
CP-even tags			
K^+K^-	57050 ± 231	443 ± 22	1289 ± 41
$\pi^+\pi^-$	20498 ± 263	184 ± 14	531 ± 28
$K^0_S\pi^0\pi^0$	22865 ± 438	198 ± 16	612 ± 35
$\pi^+\pi^-\pi^0$	107293 ± 716	790 ± 31	2571 ± 74
$K_L^0 \pi^0$	103787 ± 7337	913 ± 41	
CP-odd tags			
$K^0_S \pi^0$	66116 ± 324	643 ± 26	861 ± 46
$K^0_S\eta_{\gamma\gamma}$	9260 ± 119	89 ± 10	105 ± 15
$K^0_S\eta_{\pi^+\pi^-\pi^0}$	2878 ± 81	23 ± 5	40 ± 9
$K_S^0 \omega$	24978 ± 448	245 ± 17	321 ± 25
$K^0_S \eta'_{\pi^+\pi^-\eta}$	3208 ± 88	24 ± 6	38 ± 8
$K_S^0 \eta'_{\gamma\pi^+\pi^-}$	9301 ± 139	81 ± 10	120 ± 14
$K_{L}^{0}\pi^{0}\pi^{0}$	50531 ± 6128	620 ± 32	
Mixed CP tags			
$K^0_S \pi^+ \pi^-$	188912 ± 756	899 ± 31	3438 ± 72
$K_S^0 \pi^+ \pi_{\text{miss}}^-$		224 ± 17	
$K_{S}^{0}(\pi^{0}\pi_{\text{miss}}^{0})\pi^{+}\pi^{-}$		710 ± 34	

- ✓ Add 5 new CP tag decay modes
- ✓ The yield of DT $K_s \pi \pi vs K_s \pi \pi$ is doubled by using partially reconstructed samples
- ✓ Compared to CLEO's

[Phys. Rev. D 82,112006 (2010)]

DT event mode	Scale to CLEO's
CP-even vs $K_S \pi \pi$	5.3
CP-odd vs $K_S \pi \pi$	9.2
$K_S \pi \pi v s K_S \pi \pi$	3.9
<i>K_L</i> ππ vs <i>K_S</i> ππ	2.9

Bin migration effects of $D^0 \to K^0_{S/L} \pi^+ \pi^-$



Because of the resolution of data on DP, bin migration effects are considered in fit as the efficiency matrix.

$$N_i^{\exp'\pm} = h_{CP\pm} \sum_{j}^{\circ} \underbrace{\epsilon_{ij}^{CP'}}_{K_j'} K_j' \mp 2c_j' \sqrt{K_j' K_{-j}'} + K_{-j}'),$$

 \triangleright Neglecting bin migration leads to $\sim 0.7\sigma_{stat}$ in c_i and $\sim 0.3\sigma_{stat}$ in s_i

Strong-phase parameters c'_i and s'_i

- > The strong-phase parameters are limited by statistical uncertainty.
- > A factor of ~2.8 (2.2) more precise for $c'_i(s'_i)$ than previous results.
- → The improved result is important input for γ measurement by $B^- \rightarrow D(K_L \pi \pi) K^-$ [GGSZ].

S-wave of $D_s^+ o \pi^+ \pi^- \pi^+$

	-		
Point #	Mass (GeV/ c^2)	Amplitude	Phase (radians)
1	0.28	$1.23 \pm 1.34 \pm 1.79$	$-3.59 \pm 1.29 \pm 1.19$
2	0.448	$2.80 \pm 0.55 \pm 0.76$	$-3.82 \pm 0.20 \pm 0.21$
3	0.55	$3.42 \pm 0.54 \pm 0.70$	$-3.87 \pm 0.15 \pm 0.15$
4	0.647	$3.32 \pm 0.46 \pm 0.56$	$-3.74 \pm 0.15 \pm 0.13$
5	0.736	$5.45 \pm 0.49 \pm 0.70$	$-3.38 \pm 0.12 \pm 0.12$
6	0.803	$6.22 \pm 0.55 \pm 0.73$	$-3.10 \pm 0.13 \pm 0.14$
7	0.873	$7.88 \pm 0.46 \pm 0.73$	$-2.60 \pm 0.12 \pm 0.10$
8	0.921	$11.85 \pm 0.57 \pm 0.94$	$-2.16 \pm 0.12 \pm 0.10$
9	0.951	$16.84 \pm 0.80 \pm 0.98$	$-1.77 \pm 0.11 \pm 0.10$
10	0.968	$21.74 \pm 1.05 \pm 1.41$	$-1.21 \pm 0.11 \pm 0.10$
11	0.981	$26.45 \pm 1.23 \pm 1.55$	$-0.58 \pm 0.11 \pm 0.07$
12	0.993	$18.64 \pm 0.89 \pm 0.98$	$-0.25 \pm 0.10 \pm 0.09$
13	1.024	$11.17 \pm 0.55 \pm 0.47$	$0.17 \pm 0.10 \pm 0.11$
14	1.078	$8.00 \pm 0.42 \pm 0.18$	$0.55 \pm 0.10 \pm 0.07$
15	1.135	$6.74 \pm 0.36 \pm 0.25$	$0.98 \pm 0.09 \pm 0.07$
16	1.193	$6.10 \pm 0.32 \pm 0.46$	$1.28 \pm 0.09 \pm 0.03$
17	1.235	$6.63 \pm 0.38 \pm 0.53$	$1.32 \pm 0.10 \pm 0.03$
18	1.267	$6.27 \pm 0.39 \pm 0.43$	$1.56 \pm 0.11 \pm 0.09$
19	1.297	$6.50 \pm 0.42 \pm 0.25$	$1.47 \pm 0.10 \pm 0.06$
20	1.323	$7.50 \pm 0.47 \pm 0.39$	$1.60 \pm 0.10 \pm 0.07$
21	1.35	$7.27 \pm 0.49 \pm 0.69$	$1.75 \pm 0.10 \pm 0.11$
22	1.376	$7.53 \pm 0.51 \pm 0.45$	$1.80 \pm 0.10 \pm 0.13$
23	1.402	$8.49 \pm 0.56 \pm 0.68$	$1.94 \pm 0.10 \pm 0.07$
24	1.427	$8.08 \pm 0.57 \pm 0.57$	$2.09 \pm 0.11 \pm 0.12$
25	1.455	$8.28 \pm 0.63 \pm 0.64$	$2.54 \pm 0.09 \pm 0.09$
26	1.492	$5.82 \pm 0.60 \pm 0.67$	$3.07 \pm 0.10 \pm 0.12$
27	1.557	$1.64 \pm 0.72 \pm 0.89$	$3.05 \pm 0.30 \pm 0.84$
28	1.64	$1.38 \pm 0.57 \pm 1.07$	$7.06 \pm 0.52 \pm 0.98$
29	1.735	$2.09 \pm 0.89 \pm 1.82$	$7.32 \pm 0.51 \pm 1.44$

S-wave is parametrized by an interpolation between the N=29 control points also used by BABAR:

 $A_{\mathcal{S}-\text{wave}}(m_{\pi\pi}) = \text{Interp}(c_k(m_{\pi\pi})e^{i\phi_k(m_{\pi\pi})})_{k=1,\dots,N}$

Dalitz plot model of $D_s^+ ightarrow \pi^+ \pi^- \pi^+$

• Different fit models are tested, and **Fit 4** is chosen as the nominal fit model:

Decay Mode	Decay fraction (%)					
	Fit 1	Fit 2	Fit 3	Fit 4	Fit 5	
$f_2(1270)\pi^+$	13.2 ± 0.6	12.5 ± 0.7	10.8 ± 0.8	10.5 ± 0.8	10.5 ± 0.7	
$ ho(770)\pi^+$	—	1.7 ± 0.5	—	0.9 ± 0.4	0.4 ± 0.2	
$\rho(1450)\pi^+$	_	—	2.5 ± 0.5	1.3 ± 0.4	1.4 ± 0.3	
$\omega(782)\pi^+$	_	_	_	_	0.3 ± 0.1	
$(S$ -wave $)\pi^+$	87.7 ± 0.4	84.7 ± 0.7	85.7 ± 0.7	84.2 ± 0.8	84.1 ± 0.7	
Total	100.9 ± 1.1	98.9 ± 2.0	99.0 ± 2.0	96.8 ± 2.4	96.8 ± 2.0	
$-2\ln \mathcal{L}$	40401.2	40348.9	40321.4	40303.2	40276.7	
Significance	_	6.9σ	8.7σ	3.9σ	4.8σ	
		$[Fit1 + \rho(770)]$	$[Fit1 + \rho(1450)]$	$[Fit3 + \rho(770)]$	$[Fit4 + \omega(782)]$	
χ^2/ν	$\frac{433.0}{404-58} = 1.25$	$\frac{393.6}{404-60} = 1.14$	$\frac{350.0}{404-60} = 1.02$	$\frac{344.4}{404-62} = 1.01$	$\frac{335.2}{404-64} = 0.99$	

The results of **Fit 5** are considered as the systematic uncertainties on ω ("Alt. Fit")