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The CKM matrix 1

‘ * In the SM, the quark fields interact with both the gauge fields and
the Higgs field — the very origin of flavor mixing and CP violation.

o If the quark Yukawa interactions were absent, those weak charged-
current interactions would always be flavor-diagonal;

o If the quark interactions with gauge fields were absent, the Yukawa
interactions of quarks would always be flavor-diagonal.

* So a nontrivial mismatch between the flavor and mass eigenstates
of quarks results in flavor mixing (N, = 2) and CP violation (N, = 3).

* In the mass-eigenstate basis, it's the Cabibbo-Kobayashi-Maskawa
matrix that describes quark flavor mixing and CP violation. The only
constraint on the CKM matrix, imposed by the SM itself, is unitarity.
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e Way (1): measuring the moduli to test the normalization conditions
e Way (2): measuring the triangles to test the orthogonality relations



The b-flavored twins

* Higher-precision measurements of b-flavored
twin CKM unitarity triangles will be available, at
both super-B factory and High-luminosity LHCb.
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Constraints on the "red” sister 3
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Wolfenstein’'s expansion 4
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The twin: how similar? 5
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How to test experimentally? ¢

‘ * To measure apexes of the red and blue triangles, so as to examine
the consistency of the CKM unitarity, if the latter can be established.
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‘Available to extract p and n now. Is it possible to extract p and n?
Constraints from: Constraints from:
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e CPV in Bu / Bd decays e CPV in Bu / Bs decays
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Abstract

A comprehensive program of CP studies in heavy flavour decays has to go beyond
observing large CP asymmetries in nonleptonic B decays and finding that the sum
of the three angles of the unitarity triangle is consistent with 180°. There are many
more correlations between observables encoded in the KM matrix; those can be ex-
pressed through five umitarity triangles in addition to the one usually considered.
To test the completeness of the KM description one has to obtain a highly over-
constrained data set sensitive to OQ(\?) effects with A = sin §. Those fall into two
categories: (i) Certain large angles agree to leading order only, yet differ in order \?
in a characteristic way. (ii) Two observable angles are — for reasons specific to the
KM ansatz — O()?) and O()\*) thus generating an asymmetry of a few percent and
of about 0.1 %, respectively. The former can be measured in B, — 1, ¢ without
hadronic uncertainty, the latter in Cabibbo suppressed D decays. The intervention
of New Physics could boost these effects by an order of magnitude. A special case is
provided by Dt — Kgpat vs. D~ — Kgpm~. Finally, CP asymmetries involving
D" — DY oscillations could reach observable levels only due to New Physics.




Two-loop RGEs 8

l Two-loop RGEs for quark Yukawa couplings and CKM matrix elements I
(M. Machacek, M. Vaughn 84; V. Barger et al 93; M. Luo, Y. Xiao 03):
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Some observations 9

‘ ¢ Wolfenstein parameters run in this way, up to an accuracy of O(\) : ‘
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The twin rescaled UTs are stable against changes of the energy scale;

The original UTs enlarge or shrink, but their shapes keep unchanged.
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in the MSSM this ratio is roughly O()\?) to O(\?) .

¢ Integral form of the evolution of Wolfenstein parameters:
AA) = A(Apw) . p(A) = p(Apw) . n(A) =~ n(Apw) . [A(A) = [ LA(Agw)]
p(A) =P(Aew) . TA) =7(Apw) , p(A) = p(Aew), 7(A) = H(Apw)

In(A/Agw)
One- and two-loop functions: I, = exp ( / Sidt)
0

A numerical illustration is given below.
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Conclusions 11

‘ * In the high precision measurement era signified by super-B factory ‘
and High-luminosity LHCDb, it makes sense to probe and establish the
other CKM unitarity triangles.

* It is especially interesting to separately establish and compare the
b-flavored twin triangles, to test consistency of the SM prediction.

* Our calculations show tiny differences between the twins, and their
stability against two-loop RGE running with energy scales. The same
study can be extended to the other four CKM triangles.

* A similar study can be extended to the PMNS unitarity triangles in
the lepton sector, in particular after CP violation is observed.
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Backup: on leptons 12
The lepton unitarity triangles in the A 1a UeUra | UusUzs
complex plane can be studied in a . UaUn  UanUh
similar way. Here let us take a pair A 14 UsUp  ULUL 0
of them for the sake of illustration. L U.U:  ULUS




