Towards establishing the second b-flavored CKM unitarity triangle

Zhi-zhong Xing (IHEP, Beijing)

 xingzz@ihep.ac.cn

Work in collaboration with my Ph.D student Di Zhang: Phys. Lett. B 803 (2020) 135302; e-print: 1911.03292

Virtual ICHEP 2020, Prague, 28 July —— 06 August 2020

The CKM matrix

\star In the SM, the quark fields interact with both the gauge fields and the Higgs field - the very origin of flavor mixing and CP violation.

- If the quark Yukawa interactions were absent, those weak chargedcurrent interactions would always be flavor-diagonal;
- If the quark interactions with gauge fields were absent, the Yukawa interactions of quarks would always be flavor-diagonal.
\star So a nontrivial mismatch between the flavor and mass eigenstates of quarks results in flavor mixing ($N_{\mathrm{q}} \geq 2$) and CP violation ($N_{\mathrm{q}} \geq 3$).
* In the mass-eigenstate basis, it's the Cabibbo-Kobayashi-Maskawa matrix that describes quark flavor mixing and CP violation. The only constraint on the CKM matrix, imposed by the SM itself, is unitarity.

$$
\left.-\mathcal{L}_{\mathrm{CC}}=\frac{g}{\sqrt{2}} \overline{(u,} \begin{array}{c}
(, \quad \\
\hline
\end{array}\right)_{\mathrm{L}} \gamma^{\mu}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{\mathrm{L}} W_{\mu}^{+}+\text {h.c. }
$$

- Way (1): measuring the moduli to test the normalization conditions
- Way (2): measuring the triangles to test the orthogonality relations

The b-flavored twins

太 Higher-precision measurements of b-flavored

 twin CKM unitarity triangles will be available, at both super-B factory and High-Iuminosity LHCb.- The most studied triangle:

- The b-flavored twin sister:
$V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0$
Its apex: $\quad \widetilde{\rho}+\mathrm{i} \widetilde{\eta}=-\frac{V_{u b}^{*} V_{t b}}{V_{u s}^{*} V_{t s}}$ $\alpha^{\prime}=\alpha$ (by definition)

TWINS IN CAR
$V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0 \quad$ rescaled
Its apex: $\quad \bar{\rho}+\mathrm{i} \bar{\eta}=-\frac{V_{u b}^{*} V_{u d}}{V_{c b}^{*} V_{c d}}$
$\alpha=\left(84.5_{-5.2}^{+5.9}\right)^{\circ}$ (from data)

Constraints on the "red" sister 3

Wolfenstein's expansion

$$
\begin{aligned}
& V=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-\mathrm{i} \eta) & -A \lambda^{2} & 1
\end{array}\right) \\
&+\frac{1}{2} \lambda^{4}\left(\begin{array}{ccc}
-\frac{1}{4} & 0 & 0 \\
A^{2} \lambda[1-2(\rho+\mathrm{i} \eta)] & -\frac{1}{4}\left(1+4 A^{2}\right) & 0 \\
A \lambda(\rho+\mathrm{i} \eta) & A[1-2(\rho+\mathrm{i} \eta)] & -A^{2}
\end{array}\right)+O\left(\lambda^{6}\right) \\
& \begin{array}{l}
\text { L. Wolfenstein 83 }
\end{array} \\
& \begin{array}{l}
\text { A. Buras et al 94, } \\
\text { M. Kobayashi 94, } \\
\text { Z. Xing 94, } \\
\text { J. Charles et al 04 }
\end{array} \\
& \bar{\rho}=\rho\left\{1-\frac{1}{2} \lambda^{2}-\left[\frac{1}{8}-\left(\frac{1}{2}-\rho+\frac{\eta^{2}}{\rho}\right) A^{2}\right] \lambda^{4}\right\}+\mathcal{O}\left(\lambda^{6}\right), \text { Z. Xing, D. Zhang } \\
& \bar{\eta}= \eta\left\{1-\frac{1}{2} \lambda^{2}-\left[\frac{1}{8}-\left(\frac{1}{2}-2 \rho\right) A^{2}\right] \lambda^{4}\right\}+\mathcal{O}\left(\lambda^{6}\right) ;
\end{aligned} \begin{aligned}
& \text { 2019 }
\end{aligned}
$$

The twin: how similar?

How to test experimentally?

* To measure apexes of the red and blue triangles, so as to examine the consistency of the CKM unitarity, if the latter can be established.

$$
\rho+\mathrm{i} \eta=\frac{\sqrt{1-A^{2} \lambda^{4}}(\bar{\rho}+\mathrm{i} \bar{\eta})}{\sqrt{1-\lambda^{2}}\left[1-A^{2} \lambda^{4}(\bar{\rho}+\mathrm{i} \bar{\eta})\right]}
$$

Available to extract ρ and η now.

Is it possible to extract ρ and η ?

Constraints from:

- CPV in K mixing
- Bd mixing
- Bu / Bd decays
-CPV in Bu / Bd decays

Constraints from:

- CPV in K mixing
- Bs mixing
- Bu / Bs decays
-CPV in Bu / Bs decays

A useful reference

On the Other Five Unitarity Triangles

I. I. Bigi ${ }^{a}$, A. I. Sanda ${ }^{b}$
${ }^{a}$ Physics Dept., Univ. of Notre Dame du Lac, Notre Dame, IN 46556, U.S.A.
${ }^{b}$ Physics Dept., Nagoya University, Nagoya 464-01,Japan
e-mail addresses:
bigi@undhep.hep.nd.edu, sanda@eken.phys.nagoya-u.ac.jp

Abstract

A comprehensive program of CP studies in heavy flavour decays has to go beyond observing large CP asymmetries in nonleptonic B decays and finding that the sum of the three angles of the unitarity triangle is consistent with 180°. There are many more correlations between observables encoded in the KM matrix; those can be expressed through five unitarity triangles in addition to the one usually considered. To test the completeness of the KM description one has to obtain a highly overconstrained data set sensitive to $\mathcal{O}\left(\lambda^{2}\right)$ effects with $\lambda=\sin \theta_{C}$. Those fall into two categories: (i) Certain large angles agree to leading order only, yet differ in order λ^{2} in a characteristic way. (ii) Two observable angles are - for reasons specific to the KM ansatz $-\mathcal{O}\left(\lambda^{2}\right)$ and $\mathcal{O}\left(\lambda^{4}\right)$ thus generating an asymmetry of a few percent and of about 0.1%, respectively. The former can be measured in $B_{s} \rightarrow \psi \eta, \psi \phi$ without hadronic uncertainty, the latter in Cabibbo suppressed D decays. The intervention of New Physics could boost these effects by an order of magnitude. A special case is provided by $D^{+} \rightarrow K_{S, L} \pi^{+}$vs. $D^{-} \rightarrow K_{S, L} \pi^{-}$. Finally, CP asymmetries involving $D^{0}-\bar{D}^{0}$ oscillations could reach observable levels only due to New Physics.

Two-loop RGEs

Two-loop RGEs for quark Yukawa couplings and CKM matrix elements (M. Machacek, M. Vaughn 84; V. Barger et al 93; M. Luo, Y. Xiao 03):
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\begin{array}{l}\left|V_{u d}\right|\left|V_{u s}\right|\left|V_{u b}\right| \\ \left|V_{c d}\right|\left|V_{c s}\right| \\ \left|V_{c b}\right| \\ \left|V_{t d}\right|\end{array}\left|V_{t s}\right|\left|\left|V_{t b}\right|\right) \simeq\left(S_{1}+S_{2}\right)\left(\begin{array}{ccc}0 & 0 & \left|V_{u b}\right| \\ 0 & 0 & \left|V_{c b}\right| \\ \left|V_{t d}\right|\left|V_{t s}\right| & 0\end{array}\right)\right.$
V. Barger et al 93
$\frac{\mathrm{d} \mathcal{J}}{\mathrm{d} t} \simeq 2\left(S_{1}+S_{2}\right) \mathcal{J}, \quad \mathcal{J} \simeq A^{2} \lambda^{6} \eta \quad$ We find them valid up to $\mathcal{O}\left(\lambda^{4}\right)$.
1-loop $\left[S_{1}=-\frac{1}{16 \pi^{2}}\left(C_{\mathrm{d}}^{\mathrm{u}} y_{t}^{2}+C_{\mathrm{u}}^{\mathrm{d}} y_{b}^{2}\right)\right.$,
2-loop $L_{S_{2}}=-\frac{1}{\left(16 \pi^{2}\right)^{2}}\left[D_{\mathrm{d}}^{\mathrm{u}} y_{t}^{2}+D_{\mathrm{u}}^{\mathrm{d}} y_{b}^{2}+\left(D_{\mathrm{d}}^{\mathrm{ud}}+D_{\mathrm{u}}^{\mathrm{du}}\right) y_{t}^{2} y_{b}^{2}+D_{\mathrm{d}}^{\mathrm{uu}} y_{t}^{4}+D_{\mathrm{u}}^{\mathrm{dd}} y_{b}^{4}\right]$

SM:

$$
\begin{aligned}
& C_{\mathrm{d}}^{\mathrm{u}}=C_{\mathrm{u}}^{\mathrm{d}}=-\frac{3}{2}, \quad D_{\mathrm{d}}^{\mathrm{u}} \simeq-\frac{79}{80} g_{1}^{2}+\frac{9}{16} g_{2}^{2}-16 g_{3}^{2}+\frac{15}{4}\left(y_{t}^{2}+y_{b}^{2}\right), \\
& D_{\mathrm{u}}^{\mathrm{d}} \simeq-\frac{43}{80} g_{1}^{2}+\frac{9}{16} g_{2}^{2}-16 g_{3}^{2}+\frac{15}{4}\left(y_{t}^{2}+y_{b}^{2}\right), \quad D_{\mathrm{d}}^{\mathrm{uu}}=D_{\mathrm{u}}^{\mathrm{dd}}=\frac{11}{4}, \quad D_{\mathrm{d}}^{\mathrm{ud}}=D_{\mathrm{u}}^{\mathrm{du}}=-1
\end{aligned}
$$

MSSM:

$$
\begin{aligned}
& C_{\mathrm{d}}^{\mathrm{u}}=C_{\mathrm{u}}^{\mathrm{d}}=1, \quad D_{\mathrm{d}}^{\mathrm{u}} \simeq \frac{4}{5} g_{1}^{2}-3 y_{t}^{2}, \quad D_{\mathrm{u}}^{\mathrm{d}} \simeq \frac{2}{5} g_{1}^{2}-3 y_{\mathrm{b}}^{2} \\
& D_{\mathrm{d}}^{\mathrm{uu}}=D_{\mathrm{u}}^{\mathrm{dd}}=-2, \quad D_{\mathrm{d}}^{\mathrm{ud}}=D_{\mathrm{u}}^{\mathrm{du}}=0,
\end{aligned}
$$

Some observations

- Wolfenstein parameters run in this way, up to an accuracy of $\mathcal{O}\left(\lambda^{4}\right)$:
$\frac{\mathrm{d} \lambda}{\mathrm{d} t} \simeq \frac{\mathrm{~d} \rho}{\mathrm{~d} t} \simeq \frac{\mathrm{~d} \eta}{\mathrm{~d} t} \simeq 0, \quad \frac{\mathrm{~d} A}{\mathrm{~d} t} \simeq\left(S_{1}+S_{2}\right) A, \quad \frac{\mathrm{~d} \bar{\rho}}{\mathrm{~d} t} \simeq \frac{\mathrm{~d} \bar{\eta}}{\mathrm{~d} t} \simeq \frac{\mathrm{~d} \widetilde{\rho}}{\mathrm{~d} t} \simeq \frac{\mathrm{~d} \widetilde{\eta}}{\mathrm{~d} t} \simeq 0$

The twin rescaled UTs are stable against changes of the energy scale; The original UTs enlarge or shrink, but their shapes keep unchanged.

- In the SM: $\frac{S_{2}}{S_{1}} \sim \frac{1}{16 \pi^{2}} \cdot \frac{D_{\mathrm{d}}^{\mathrm{u}}+D_{\mathrm{d}}^{\mathrm{uu}} y_{t}^{2}}{C_{\mathrm{d}}^{\mathrm{u}}} \sim \mathcal{O}\left(\lambda^{2}\right)$,
in the MSSM this ratio is roughly $\mathcal{O}\left(\lambda^{3}\right)$ to $\mathcal{O}\left(\lambda^{2}\right)$.
- Integral form of the evolution of Wolfenstein parameters:
$\lambda(\Lambda) \simeq \lambda\left(\Lambda_{\mathrm{EW}}\right), \quad \rho(\Lambda) \simeq \rho\left(\Lambda_{\mathrm{EW}}\right), \quad \eta(\Lambda) \simeq \eta\left(\Lambda_{\mathrm{EW}}\right), \quad A(\Lambda) \simeq I_{1} I_{2} A\left(\Lambda_{\mathrm{EW}}\right)$
$\bar{\rho}(\Lambda) \simeq \bar{\rho}\left(\Lambda_{\mathrm{EW}}\right), \quad \bar{\eta}(\Lambda) \simeq \bar{\eta}\left(\Lambda_{\mathrm{EW}}\right), \quad \widetilde{\rho}(\Lambda) \simeq \widetilde{\rho}\left(\Lambda_{\mathrm{EW}}\right), \quad \widetilde{\eta}(\Lambda) \simeq \widetilde{\eta}\left(\Lambda_{\mathrm{EW}}\right)$,
One- and two-loop functions: $I_{i}=\exp \left(\int_{0}^{\ln \left(\Lambda / \Lambda_{\mathrm{EW}}\right)} S_{i} \mathrm{~d} t\right)$
A numerical illustration is given below.

Conclusions

\star In the high precision measurement era signified by super-B factory and High-luminosity LHCb, it makes sense to probe and establish the other CKM unitarity triangles.
\star It is especially interesting to separately establish and compare the b-flavored twin triangles, to test consistency of the SM prediction.
\star Our calculations show tiny differences between the twins, and their stability against two-loop RGE running with energy scales. The same study can be extended to the other four CKM triangles.
\star A similar study can be extended to the PMNS unitarity triangles in the lepton sector, in particular after CP violation is observed.

THANK YOU FOR YOUR ATTENTION

Backup: on leptons

The lepton unitarity triangles in the

 complex plane can be studied in a similar way. Here let us take a pair of them for the sake of illustration.

$$
\begin{array}{ll}
\triangle_{e}^{\prime}: & 1+\frac{U_{\mu 2} U_{\tau 2}^{*}}{U_{\mu 1} U_{\tau 1}^{*}}+\frac{U_{\mu 3} U_{\tau 3}^{*}}{U_{\mu 1} U_{\tau 1}^{*}}=0 \\
\triangle_{1}^{\prime}: & 1+\frac{U_{\mu 3} U_{\mu 2}^{*}}{U_{e 3} U_{e 2}^{*}}+\frac{U_{\tau 3} U_{\tau 2}^{*}}{U_{e 3} U_{e 2}^{*}}=0
\end{array}
$$

$\left(\rho_{e}-\frac{1}{2}\right)^{2}+\left(\eta_{e}-\frac{1}{2} \cot \alpha_{e}\right)^{2}=\left(\rho_{1}-\frac{1}{2}\right)^{2}+\left(\eta_{1}-\frac{1}{2} \cot \alpha_{e}\right)^{2}=\left(\frac{1}{2} \csc \alpha_{e}\right)^{2}$

